» » » » Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра


Авторские права

Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Здесь можно скачать бесплатно "Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
Рейтинг:
Название:
Пространства, времена, симметрии. Воспоминания и мысли геометра
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Пространства, времена, симметрии. Воспоминания и мысли геометра"

Описание и краткое содержание "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать бесплатно онлайн.



Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.

Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.






Многие мои работы, начиная с докторской диссертации и работы 1949 г., помещенной в сборнике моих переводов работ Картана, посвящены образам симметрии различных пространств, образующим модели симметрических пространств Картана, определяемых двусторонними симметриями. Образы симметрии различных пространств изучались и многими моими учениками. В моей книге 2003г. совместной с М.П. Замаховским рассматриваются обобщения симметрических пространств, называемые периодическими пространствами. Эти пространства определяются k-сторонними симметриями при k >2.

Симметрии привлекали внимание математиков и философов еще в древности. Правильные многогранники, обладающие максимальной симметрией, были открыты пифагорейцами и играли особую роль в философии Платона, вследствие чего их часто называют "платоновыми телами". Платон считал, что атомы четырех греческих элементов имеют форму четырех правильных многогранников: атомы огня имеют форму правильного тетраэдра, атомы воздуха - форму октаэдра, атомы воды - форму икосаэдра, а атомы земли - форму куба. Форму пятого правильного многогранника - додекаэдра по мнению Платона имеет мир в целом, а на 12 гранях этого додекаэдра по его мнению изображены 12 знаков зодиака. Группа симметрии тетраэдра состоит из 24 элементов, группы симметрии октаэдра и куба - из 48 элементов, группы симметрии икосаэдра и додекаэдра - из 120 элементов.

Великий математик первой половины ХХ века Герман Вейль в своей книге "Симметрия" отметил, что изображения божеств, святых и священных животных в ассиро-вавилонском, древнегреческом, римском и средневековом искусстве всегда симметричны. Симметрия этих изображений указывает на то, что их авторы ощущали глубокую связь между божественным и симметричным.

Двойственность у пифагорейцев

Пары противоположных свойств играли важную роль в философии пифагорейцев. Аристотель писал о них в своей "Метафизике": "Пифагорейцы утверждают, что имеется десять начал, расположенных попарно: предел и беспредельное, нечетное и четное, единое и множество, правое и левое, мужское и женское, покоящееся и движущееся, прямое и кривое, свет и тьма, хорошее и дурное, квадратное и продолговатое".

Из этих пар противополижностей 1-я, 4-я,7-я и 10-я пары относятся к геометрии, 2-я и 3-я - к арифметике, 5-я - к биологии, 6-я - к механике, 8-я - к физике, 9-я - к этике. Пифагорейцы рассматривали все эти пары противоположностей вместе потому, что они не выделяли отдельных наук из единой универсальной науки.

В каждой паре противоположностей первую пифагорейцы считали совершенной, а вторую - несовершенной.

Пифагорейцы отождествляли единицы не только с точками, но и с душами неродившихся или умерших людей, а вещи, в том числе тела людей, отождествлялись с числами, поэтому пифагорейская пара противоположностей "единое и множество" по существу совпадает с парой "душа и тело".

Пара противоположностей "единое и множество" - такая же древняя, как пара "душа и тело". Первоначально это были два первых числа, впоследствии второе из этих двух "чисел" превратилось в число 2, и "чисел" стало три - 1, 2 и "много". Затем это новое "много" превратилось в число 3 и появился числовой ряд 1, 2, 3, 4, 5, 6, "много". Впоследствии и этот ряд расширился и последнее слово "много" превратилось в число 7. О том, что слово "семь" первоначально обозначало неопределенно большое количество, свидетельствуют русские пословицы "семь бед - один ответ", "у семи нянек дитя без глаза", "один с сошкой - семеро с ложкой", "семь раз отмерь, один раз отрежь". Позже такими числами, названия которых прежде обозначали неопределенно большое количество, стали 12 и 40. Числа 2, 3, 7, 12 и 40 и позже сохранили мистический характер, этим объясняется особая роль этих чисел во многих религиях и культурах.

Среди 7 "планет" древности - Солнца, Луны и пяти планет - имеются две пары, соответствующие пифагорейским противоположностям: Солнце и Луна, соответствующие "свету и тьме" и Марс и Венера, соответствующие "мужскому и женскому", которые часто обозначаются знаками этих планет. Если из 7 "планет" удалить эти две пары, мы получим "античную троицу" - отца - Кроноса-Сатурна, сына- Зевса-Юпитера и вестника богов - Гермеса- Меркурия. Античная троица значительно ближе к христианской, чем индийская троица Брахма - Вишну - Шива.

Симметричная и асимметричная двойственность

Из десяти пар противоположностей пифагорейцев шесть пар - 1-я, 2-я 4-я, 5-я, 8-я и 9-я симметричны, а другие четыре пары - 3-я, 6-я, 7-я и 10-я асимметричны.

Симметричными и асимметричными бывают и другие двойственности. Например, принцип двойственности проективной геометрии и все принципы двойственности Картана совершенно симметричны, а "двойственность по Картану", определенная Гельфандом, асимметрична. Асимметрична и двойственность между эллиптическим пространством с мнимым абсолютом и гиперболическим, псевдоэллиптическими и псевдогиперболическими пространствами с вещественными абсолютами: группа движений эллиптического пространства компактна, а группы движений остальных пространств некомпактны. Асимметрична и двойственность между эллипсом и "парой противоположных гипербол", которую подчеркивал Аполлоний, и между окружностью и равносторонней гиперболой, на которую мы обращали внимание, говоря об алгебраическом трактате Хайяма.

Симметричной является двойственность между замкнутыми и открытыми множествами в топологии, между операциями пересечения и объединения множеств в теории множеств, между конъюнкцией и дизъюнкцией в математической логике, и между аналогичными операциями во многих областях математики.

Примером двойственности в математике является сопоставление коммутативной группы и ее группы характеров. Характером коммутативной группы называется гомоморфное отображение этой группы в группу комплексных чисел единичного модуля. Характеры коммутативной группы сами образуют коммутативную группу. В случае конечных коммутативных групп группа характеров коммутативной группы G, как показал Г.Ф.Фробениус, изоморфна самой группе G и двойственнисть между группой и ее группой характеров симметрична. В случае бесконечных коммутативных групп группа G и ее группа характеров G* уже не изоморфны, но, как показал Л.С.Понтрягин, в случае, когда группа G компактна, группа G* дискретна, а в случае, когда группа G дискретна, группа G* компактна, и двойственность между компактными группами и их группами характеров асимметрична.

Двойственность в зороастризме и в учении "Инь-ян"

Пары противоположностей, аналогичные пифагорейским, имелись у персидских зороастрийцев и в китайском учении "Инь-ян".

Религия зороастрийцев была основана на борьбе доброго бога Ахура- Мазды (Ормузда) и злого бога Ахгра-Майню (Ахримана). С этими богами были связаны противоположности "свет и тьма", "Солнце и Луна", "тепло и холод", "добро и зло".

Учение "Инь-ян", на котором были основаны наука и образование в древнем и средневековом Китае, связано с противоположностями "солнечная погода и дождь", "весна-лето и осень-зима", "Солнце и Луна", "свет и тьма", "мужское и женское", "положительное и отрицательное", "небо и земля".

Возможно, что между пифагорейцами и древними персами имелись связи; o связях между древними персами и китайцами мы упоминали в предыдущей главе. Двойственность зороастризма, несомненно, определила двойственность "отца диалектики" Гераклита, который учился у зороастрийских жрецов.

Двойственность в Библии

Первая книга Библии "Бытие" начинается такими словами: "В начале сотворил Бог небо и землю. Земля же была безвидна и пуста, и тьма над бездною; и Дух Божий носился над водою. И сказал Бог: да будет свет. И стал свет. И увидел Бог свет, что он хорош ; и отделил Бог свет от тьмы. И назвал Бог свет днем, а тьму ночью". Мы видим, что согласно Библии сотворение мира было результатом воздействия Духа Божьего на материю, не имеющую формы - на воду. В результате появились противоположности - небо и земля, свет и тьма.

Далее, согласно Библии, Бог создал элементы, минералы, растения, животных.

В шестой день "сотворил Бог человека по образу Своему, по образу Божию сотворил его; мужчину и женщину сотворил их... И создал Господь Бог человека из праха земного, и вдул в лице его дыхание жизни, и стал человек душею живою".

Сотворяя человека Бог создал еще две противоположности - душу и тело, мужчину и женщину - Адама и Еву.

Двойственность у Платона

Вселенная Платона состояла из трех миров: 1) мира "идей", 2)"пространства", 3) мира "рожденных". Платон писал в "Тимее" : "Приходится признать во-первых, что есть тождественная идея, не рожденная и не гибнущая, ничего не воспринимающая в себя откуда бы то ни былo и сама ни во что не входящая, незримая и никак иначе не ощущаемая, но отданная на попечение мысли. Во-вторых, есть нечто подобное этой идее и носящее то же имя - ощутимое, рожденное, вечно движущееся, возникающее в некоем месте и внонь из него исчезающее, и оно воспринимается посредством мнения, соединенного с ощущением. В- третьих, есть еще один род, а именно пространство: оно вечно, не приемлет разрушения, дарует обитель всему рождающемуся, но самовоспринимается вне ощущения, посредством некоего незаконного умозаключения, и поверить в него почти невозможно. Мы видим его как бы в грезах и утверждаем, будто этому бытию непременно должно быть где-то, в каком- то месте и занимать какое-то пространство, а то, что не находится ни на земле, ни на небесах, будто бы и не существует".


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Пространства, времена, симметрии. Воспоминания и мысли геометра"

Книги похожие на "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Борис Розенфельд

Борис Розенфельд - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра"

Отзывы читателей о книге "Пространства, времена, симметрии. Воспоминания и мысли геометра", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.