» » » » Морис Клайн - Математика. Утрата определенности.


Авторские права

Морис Клайн - Математика. Утрата определенности.

Здесь можно скачать бесплатно "Морис Клайн - Математика. Утрата определенности." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Морис Клайн - Математика. Утрата определенности.
Рейтинг:
Название:
Математика. Утрата определенности.
Автор:
Издательство:
Мир
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Математика. Утрата определенности."

Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.



Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.






По выражению Германа Вейля, неконструктивные доказательства существования извещают мир о том, что сокровище существует, не указывая при этом его местонахождение, т.е. не позволяя это сокровище использовать. Такие доказательства не могут заменить построение — подмена конструктивного доказательства неконструктивным влечет утрату смысла и значения самого понятия «доказательство». Вейль указал, что приверженцы философии интуиционизма вынуждены отказаться от наиболее важных теорем существования классического анализа. Канторовскую иерархию трансфинитных чисел Вейль считал очень запутанной. Классический анализ, писал Вейль в книге «Континуум» (1918), — это дом, построенный на песке. Уверенным можно быть только в том, что доказано интуиционистскими методами.

Отрицание закона исключенного третьего приводит к возможности появления новых типов неразрешимых высказываний. В бесконечных множествах, как утверждают интуиционисты, возможна третья ситуация: могут существовать высказывания, которые нельзя ни доказать, ни опровергнуть. Интуиционисты приводили пример такого высказывания. Пусть, по определению, число k характеризуется условием, согласно которому k-e положение в десятичном разложении числа π занимает первый нуль, такой, что за ним по порядку следуют цифры от 1 до 9. По логике Аристотеля, k либо существует, либо не существует, и математики, следуя Аристотелю, исходили в своих рассуждениях лишь из этих двух возможностей. Брауэр и интуиционисты отвергли все рассуждения подобного типа на том основании, что неизвестно, удастся ли нам вообще когда-либо доказать, существует ли число k или не существует. Иначе говоря, по мнению интуиционистов, существуют вполне осмысленные и важные математические проблемы, которые могут оказаться неразрешимыми, какое бы обоснование мы ни подводили под математику.{124} Эти вопросы могут казаться нам разрешимыми только потому, что они касаются понятий и проблем, сходных с теми, которые нам уже приходилось решать в прошлом.

С точки зрения интуиционистов неприемлемы классическое и логическое (аксиоматическое) построения системы вещественных чисел, математический анализ, современная теория функций вещественного переменного, интеграл Лебега и многие другие понятия и теории. Брауэр и его сторонники не ограничивались критикой и пытались построить математику на конструктивной основе. Им удалось спасти некоторые разделы перечисленных выше теорий, но конструктивные варианты отличались такой сложностью, что даже разделявший философию интуиционизма Вейль сетовал по поводу невыносимой громоздкости конструктивных доказательств. Среди прочего интуиционистам удалось перестроить на конструктивной основе элементарные разделы алгебры и геометрии.

Тем не менее перестройка происходила чрезвычайно медленно. И в 1927 г. в статье «Обоснования математики» ([50], с. 365-388; ср. также [50], с. 389-399) Гильберт с полным правом заявил: «Какое значение имеют жалкие остатки, немногочисленные, неполные, не связанные друг с другом единичные результаты, которые были выработаны интуиционистами по сравнению с могущественным размахом современной математики!» ([50], с. 383). Разумеется, в 1927 г. интуиционистам, по их же собственным меркам, не удалось продвинуться сколько-нибудь далеко в осуществлении своей программы перестройки классической математики. К сожалению, интуиционисты, как и логицисты, не смогли прийти к единому мнению относительно того, на какой основе производить эту перестройку. Одни считали необходимым исключить все общие теоретико-множественные понятия и ограничиться лишь теми понятиями, которые допускают эффективное определение или построение. Менее экстремистскую позицию занимали конструктивисты, не ставившие под сомнение классическую логику, а стремившиеся как можно полнее использовать ее.{125} Некоторые выделяли определенный класс математических объектов, а затем вводили конструктивные методы. Немало было и тех, кто допускал по крайней мере тот или иной класс вещественных чисел (не охватывавший весь континуум вещественных чисел). Другие допускали лишь целые числа, а из остальных чисел и функций признавали лишь вычислимые. При этом различные группы понимали вычислимость по-разному. Например, число считалось вычислимым, если к нему можно было приближаться со все возрастающей точностью (эффективно определяя точность приближения!), используя допустимые числа из некоторого множества, по аналогии с тем, как к обычным иррациональным числам можно все более точно приближаться с помощью конечных десятичных дробей.

К сожалению, понятие «конструктивность» отнюдь не является ни четким, ни однозначным. Рассмотрим число N, определенное следующим образом:

На время положим p = 3. Тогда N = 1 − 0,001 = 0,999. С другой стороны, если p = 2, то N = 1,01. Пусть теперь p — первый знак в десятичном разложении числа π, следующий после группы цифр 123456789, идущих друг за другом именно в этом порядке; если же такое p вообще не существует, то положим, что N, по определению, равно 1. Если число p существует и четно, то N = 1,000… (на p-м месте после запятой стоит 1). Если число p нечетно, то N = 0,999… (p девяток после запятой). Однако мы не знаем, существует ли определенное выше число p. Если оно не существует, то N = 1. Если же p существует, но не встречается, например, среди первой тысячи знаков десятичного разложения числа π, то мы не можем даже начать выписывать N. Тем не менее N определено, и его даже можно записать с любой степенью точности. Но разве определение N конструктивно?

Разумеется, доказательства существования, использующие аксиому выбора или гипотезу континуума, не конструктивны; они неприемлемы не только для интуиционистов, но и для многих математиков, не разделяющих идей интуиционистов.

Хотя разные группы интуиционистов и конструктивистов в чем-то расходились между собой, им все же удалось перестроить значительную часть классической математики. Некоторые из перестроенных на конструктивной основе теоремы оказались более узкими, чем их неконструктивные прототипы. Когда интуиционистам указывали на это, они отвечали, что классический анализ при всей своей несомненной полезности по математической истинности уступает конструктивному анализу. Резюмируя, можно сказать, что конструктивистам удалось добиться лишь весьма ограниченных успехов и что перспективы распространить конструктивистский подход на всю современную математику нельзя считать обнадеживающими. Имея в виду медленный прогресс конструктивистского направления, математики из школы Бурбаки, о которой у нас пойдет речь в дальнейшем, заметили: «Интуиционистская школа, о которой математики вспоминают как о своего рода историческом курьезе, во всяком случае, оказала услугу математике тем, что заставила своих противников, т.е. подавляющее большинство математиков, яснее осознать причины (одни — логического порядка, другие — психологического) их веры в математику» ([68], с. 53).{126} Критики интуиционизма вполне могли бы процитировать четверостишие Сэмуэля Хоффенштейна:

Мало-помалу все станет гладко,
Коль все ошибки изымем из факта,
Иллюзий плевелы — из истины золота,
Но разум погибнет от лютого голода.

Чтобы гарантировать надежность оснований математики, интуиционисты готовы даже пожертвовать какими-то разделами классической математики и не считают слишком высокой ценой отказ от «рая» канторовской теории трансфинитных чисел.

Хотя противники интуиционизма иногда излишне бесцеремонно и догматически требовали отказа от интуиционистской философии, критические замечания в адрес интуиционизма высказывали и сочувствующие ему люди — и к этим замечаниям нельзя не отнестись серьезно. В частности, одно из критических замечаний состояло в том, что теоремы, которые интуиционисты столь лихорадочно стремились перестроить в соответствии со своими принципами, не были подсказаны интуицией и вряд ли подкреплялись ею. Открытию этих теорем в равной мере способствовали все известные математические методы, всевозможные рассуждения, догадки, обобщения частных случаев и внезапные, не поддающиеся рациональному объяснению озарения. Следовательно, на практике интуиционисты не менее других зависят от обычных методов, принятых в математике, и даже от классической логики, хотя и пытаются реконструировать доказательства в соответствии со своими принципами. В ответ на подобное замечание интуиционисты могли бы возразить, что когда новые результаты устанавливаются традиционными методами, сами результаты вполне могут оказаться интуитивно приемлемыми. Не отрицая важности других утверждений интуиционизма, нельзя не отметить, что многие теоремы, даже приемлемые для интуиционистов, содержат столь тонкие и далекие от интуиции утверждения, что трудно представить, как может человеческий разум непосредственно воспринимать их истинность.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Математика. Утрата определенности."

Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Морис Клайн

Морис Клайн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Морис Клайн - Математика. Утрата определенности."

Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.