Морис Клайн - Математика. Утрата определенности.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Математика. Утрата определенности."
Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Паскаль также глубоко верил в интуицию и в своих математических работах опирался в основном на интуицию. Он предвидел важные результаты, высказывал великолепные догадки и находил изящные, неожиданные решения. С годами Паскаль стал отдавать интуиции явное предпочтение как источнику истины. Некоторые из его высказываний на эту тему получили широкую известность: «У сердца — свои причины, о которых не знает разум»; «Логика — медленный и мучительный метод, позволяющий тем, кто не знает истины, открывать ее»; «Смири гордыню, бессильный разум».
Многие положения интуиционизма были предвосхищены Иммануилом Кантом. Будучи прежде всего философом, Кант тем не менее в 1755-1770 гг. преподавал математику и физику в Кёнигсбергском университете. Он считал, что свои ощущения мы получаем из предполагаемого внешнего мира, однако эти ощущения (или восприятия) не дают существенного знания. Все восприятия включают в качестве необходимого звена взаимодействие между тем, кто воспринимает, и воспринимаемым объектом. Разум организует восприятия, и эти организации являются интуитивными представлениями о пространстве и времени. Пространство и время не существуют сами по себе, а являются творениями нашего разума. Разум применяет свое понимание пространства и времени к данным опыта, которые лишь пробуждают разум. Знание может начинаться с опыта, но в действительности не опыт является источником знания. Знание берется из разума. Математика дает нам блестящий пример того, как далеко мы можем продвинуться в априорном (истинном) знании независимо от опыта. Математические теоремы Кант относит к разряду так называемых синтетических суждений, т.е. суждений, доставляющих нам новое знание и тем отличающихся от аналитических суждений типа, например, предложения «Все тела протяженны», не содержащих ничего нового, так как в силу самой природы тел протяженность является их неотъемлемым свойством (примером синтетического суждения может служить, скажем, утверждение о том, что отрезок прямой есть кратчайшее расстояние между двумя точками).
Хотя Кант заблуждался, приписывая евклидовой геометрии априорный синтетический характер, аналогичное заблуждение разделяли почти все философы и математики того времени. Эта ошибка дискредитировала философию Канта в глазах философов и математиков последующих поколений. Однако проведенный Кантом анализ времени как одной из форм интуиции и его общий тезис о том, что разум служит источником основных истин, имели непреходящее значение.
Если бы математики были лучше знакомы со взглядами таких мыслителей, как Декарт, Паскаль и Кант, то интуиционистское направление в основаниях математики, считавшееся, по крайней мере в первые годы после его возникновения, весьма радикальным, шокировало бы их гораздо меньше. Но, разумеется, ни Декарт, ни Паскаль, ни Кант не имели в виду интуиционистский подход ко всей математике. Как направление в основаниях математики интуиционизм — порождение нашей эпохи.
Непосредственным предшественником современного интуиционизма был Леопольд Кронекер. Широко известно его высказывание: «Господь бог создал целые числа; все остальное — дело рук человеческих». Сложную логическую концепцию целого числа Кантора и Дедекинда, базирующуюся на теоретико-множественной основе, Кронекер считал менее надежной, чем непосредственное принятие целых чисел. По мнению Кронекера, целые числа интуитивно понятны и не нуждаются в более строгом обосновании.{117} Все остальные математические понятия следовало строить так, чтобы их смысл был интуитивно понятен. Кронекер выступал за построение системы вещественных чисел на основе целых чисел и методов, позволяющих не только доказывать общие теоремы существования, но и вычислять значения соответствующих чисел. Так, Кронекер считал вполне приемлемыми иррациональные числа, являющиеся корнями многочленов, лишь в том случае, если соответствующие корни могут быть вычислены с любой степенью точности.
Кантор доказал, что существуют трансцендентные иррациональные числа, не являющиеся корнями никаких алгебраических уравнений [с целыми коэффициентами]{118}, и в 1882 г. Фердинанд Линдеман (1852-1939) доказал, что π — трансцендентное число. По поводу этой работы Кронекер заявил Линдеману: «Что толку от вашей прекрасной работы о числе π? Стоит ли браться за исследование подобных проблем, если подобные иррациональные числа вообще не существуют?» Возражение Кронекера относилось не вообще к иррациональным числам, а к доказательствам, не позволяющим вычислять те числа, о которых идет речь. Предложенное Линдеманом доказательство трансцендентности числа π не было конструктивным. С помощью разложения в ряд значение π можно было вычислить с любой степенью точности — но Кронекер считал неприемлемым само использование такого (бесконечного!) ряда.
Бесконечные множества и трансфинитные числа Кронекер полностью отвергал, так как считал возможным иметь дело только с потенциальной бесконечностью. С точки зрения Кронекера, все, что сделал в этой области Кантор, было не математикой, а мистикой. Классический анализ Кронекер назвал игрой в слова. Он мог бы с успехом добавить, что если у бога есть несколько математик, то ему следовало бы оставить их при себе. Однако Кронекер лишь высказывал подобные взгляды, но не развивал их. Возможно, он и сам относился к своим столь радикальным воззрениям не слишком серьезно.
Борель, Бэр и Лебег, с чьими возражениями против аксиомы выбора мы уже познакомились, были «полуинтуиционистами». Основание всей математики они усматривали в системе вещественных чисел. Подробное изложение их взглядов представляет лишь исторический интерес, так как и эти математики, в полемике которых речь шла о специальных вопросах, последовательной философии не создали. Пуанкаре, как и Кронекер, считал, что не следует давать определения целым числам или выводить их свойства на аксиоматической основе. Наша интуиция предшествует такому выводу. Пуанкаре также считал, что математическая индукция является общим принципом, допускающим получение новых результатов. При всей своей кажущейся интуитивности метод математической индукции к логике, по его мнению, не сводится.
Сущность метода математической индукции, каким его видел Пуанкаре, заслуживает изучения, поскольку она и поныне вызывает споры. Следуя методу математической индукции, тот, кто хочет доказать, например, что при всех целых положительных n имеет место равенство
1 + 2 + 3 + … + n = n(n + 1)/2 (1)
должен сначала установить, что оно выполняется при n = 1, а затем доказать, что если оно выполняется при каком-то целом n = k, то выполняется и при следующем значении n = k + 1. Следовательно, считал Пуанкаре, метод математической индукции апеллирует к бесконечному множеству аргументов: мы утверждаем, что так как равенство (1) выполняется при n = 1, то оно выполняется и при n = 2, а так как оно выполняется при n = 2, то оно выполняется и при n = 3 и т.д. при всех положительных целых n. Но ни один логический принцип не охватывает бесконечно много аргументов. Следовательно, метод математической индукции не следует из логических принципов. Тем самым, по мнению Пуанкаре, непротиворечивость математики не может быть доказана сведением математики к логике, как предлагали логицисты.
По поводу бесконечных множеств Пуанкаре утверждал: «Актуальной бесконечности не существует. То, что мы называем бесконечностью, представляет собой неограниченную возможность создания новых объектов независимо от того, сколько объектов уже существует».
Пуанкаре резко отрицательно относился к громоздким обозначениям логицистов, и в его «Науке и методе» по поводу логицизма отчетливо звучат саркастические ноты. Так, говоря о подходе к понятию целого числа, избранном Бурали-Форти в работе 1897 г., где число 1 определяется с помощью сложного лабиринта буквенных символов, Пуанкаре замечает:
Это определение в высшей степени подходит для того, чтобы дать представление о числе 1 тем лицам, которые никогда о нем ничего не слышали!.. Я слишком мало понимаю приверженцев Пеано, чтобы рискнуть его [определение числа 1] критиковать; но я опасаюсь, что это определение заключает petitio principii [логическую ошибку «предвосхищение основания»], так как я вижу цифру 1 в левой части и изображенное буквами слово «один» (Un) — в правой части равенства.
([1], с. 377.)Затем Пуанкаре обращается к определению нуля, предложенному одним из первых сторонников логицизма Луи Кутюра (1868-1914). Нуль, по Кутюра, — это «число элементов нулевого класса. А что такое нулевой класс? Это класс, который не содержит никакого элемента» ([1], с. 377). Далее Кутюра «усовершенствует» свое определение, переводя его на язык символических обозначений. Пуанкаре дает обратный перевод: «Нуль есть число предметов, удовлетворяющих такому условию, которое никогда не выполняется. Но так как «никогда» означает «ни в одном случае», то я не вижу значительного успеха в этой замене» ([1], с. 377).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Математика. Утрата определенности."
Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Морис Клайн - Математика. Утрата определенности."
Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.