» » » » Грег Иган - Лестница Шильда, роман


Авторские права

Грег Иган - Лестница Шильда, роман

Здесь можно скачать бесплатно "Грег Иган - Лестница Шильда, роман" в формате fb2, epub, txt, doc, pdf. Жанр: Научная Фантастика, издательство "М.И.Ф.". Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Грег Иган - Лестница Шильда, роман
Рейтинг:
Название:
Лестница Шильда, роман
Автор:
Издательство:
"М.И.Ф."
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Лестница Шильда, роман"

Описание и краткое содержание "Лестница Шильда, роман" читать бесплатно онлайн.



В результате неудачного научного эксперимента самопроизвольно образовался новый тип пространства — «ново-вакуум», который совершенно необъяснимо начал расширяться во все стороны с полусветовой скоростью, поглощая всю «обычную» материю на своем пути. Среди человечества возникают два лагеря: одни пытаются найти способ уничтожить эту угрозу, а другие — изучить и понять.


Тем более, что, возможно, люди, сами того не осознавая, только что создали новую вселенную…


Greg Egan. Schild's Ladder. 2002.

Перевод с английского: Конрад Сташевски.


(Неофициальное электронное издание)






[Страничка эта последнее время не обновляется, но многие ссылки актуальны. Доступный начинающим обзор публикаций, вышедших после написания «Лестницы Шильда», можно почерпнуть в лекциях по квантовой гравитации, прочитанных Ли Смолиным в 2011 г. на Закопанской конференции: http: //arxiv.org/abs/1102.3660v5].



Математические тонкости: как декогеренция подавляет распад ложного вакуума [128]

За десять лет, минувших после выхода в свет «Лестницы Шильда», в петлевой квантовой гравитации и геометрической физике наметился определенный прогресс в исследованиях пространств с множественными взаимодействующими вакуумными состояниями и влияния декогеренции на космологические процессы в крупномасштабной структуре Вселенной. Многие предсказания и гипотезы, сформулированные Иганом, в этих работах нашли превосходное подтверждение.

Наибольший интерес в контексте романа представляет эффект подавления или даже полной блокировки распада «ложного» вакуума декогеренцией. Напомню, что в «Лестнице Шильда» представлена необычная точка зрения на эти процессы: роль «ложного», метастабильного вакуума играет наш собственный, в который погружено все вещество в известной Вселенной.

Как отметил в гл. 7 Тарек, наш вакуум до получения на Станции Мимоза нововакуума сохранял кажущуюся стабильность за счет постоянной декогеренции по образцу квантового эффекта Зенона. Математическое описание этих процессов не особенно сложно, однако дальнейшее изложение все же рассчитано на читателей с хорошим уровнем математической подготовки. При первом знакомстве с книгой этот раздел можно пропустить и вернуться к нему на досуге, если вам покажется необходимым получить более глубокое представление о физике вселенной «Лестницы Шильда».

Рассмотрим модельную двухуровневую систему с детектором. Предположим, что вначале детектор и система не коррелируют:

|ψ] = |ψin]detect × |ψsys.

Пусть гамильтониан взаимодействия приведен к базису

{|↑]sys, {|↓]sys }

После эволюции, которую претерпевают система и детектор, получаем:


|↑]sys|ψin]detect → |↑]sys|ψ↑]detect

|↓]sys|ψin]detect → |↓]sys|ψ↓]detect


В предположении, что первоначально двухуровневая система находилась в состоянии когерентной суперпозиции, можно показать, что, как только детектор пооизводит наблюдение над системой (то есть обращает |[ψ↑|ψ↓]| в 0), волновая функция коллапсирует в одно из собственных состояний (eigenstates) гамильтониана взаимодействия. Определим фактор декогеренции соотношением


rdec = [ψ↑|ψ↓].


Если система постоянно запутана с каким-либо квантовым объектом, когерентность ее полностью утрачивается. На этом основан квантовый эффект Зенона.

Рассмотрим эволюцию системы из состояния ψ1 в состояние ψ2 путем квантового туннелирования (в романе этому соответствует прыжок сквозь Барьер). Заставим систему взаимодействовать с первоначально некоррелированным с нею окружением. Пусть скорость туннелирования составляет Ξ, тогда для времени переходного процесса t <<1/Ξ система описывается гамильтонианом


Ĥ = €σzsys + Ξσxsys + Ĥenv + Ĥint


Напомню, что предпочтительный базис окружения таков, что ψ1, ψ2 — собственные состояния гамильтониана. Вероятность распада состояния при t<<1/Ξ зависит от времени примерно квадратично:


Prdecay(t) = sin2(Ξt) = Ξ2t2


Но оказывается, что для малых t вероятность распада системы путем перехода из состояния ψ1 в состояние ψ2 при эволюции волновой функции по закону


|ψ(t)0sys = |ψ1] — iΞt|ψ2] + O(Ξ2t2)


составляет:


Prdecay(t) = 2Ξ2 INT0t dťťRe[r(ť)] + O(Ξ4t4)


Когда когерентность полностью теряется, вероятность туннелирования перестает возрастать. Этот процесс довольно сложен. Во-первых, окружение может сдвинуть уровни энергии системы и повлиять на скорость туннелирования. Во-вторых, сам фактор декогеренции изменяется по фазе во времени, и вероятность туннелирования вместе с ним (даже при отсутствии запутывания). И, наконец, даже если окружение взаимодействует с системой настолько слабо, что уровни энергии не претерпевают сдвига, утечка информации из системы все равно происходит, она запутывается с окружением, и это уменьшает фактор декогеренции. Таким образом и растет вероятность замораживания системы в определенном состоянии: наблюдается квантовый эффект Зенона. Это заключение справедливо и для измерений с периодом 1/Ξ, когда основным законом убывания фактора декогеренции со временем становится зависимость вида exp (- Ξ t).

Процесс гравитационного взаимодействия пузыря вновь возникшего вакуума с фоновым излучением можно исследовать для разной космологической топологии. Наиболее любопытный результат получается в пространстве де Ситтера (оно возникает как максимально симметричное вакуумное решение уравнений Эйнштейна при Λ > 0, то есть при постоянной фоновой от- талкивательной энергии скалярного поля), где распад нововакуума настолько сильно подавлен декогеренцией, что скорость его падает экспоненциально для новорожденных пузырей радиусом вплоть до радиуса Хаббла RH = с/Н, где H — постоянная Хаббла. Тем не менее для нововакуума остается канал распада по механизму, который не затрагивается декогеренцией. Но гарантировать можно только распад за время, не превосходящее характеристического времени возврата Пуанкаре. Именно об этом говорит в романе Софус, представляя наш вакуум (метастабильный) объектом постоянного «наблюдения» Всеобщего Графа (под этим термином, очевидно, понимается мультивселенная эвереттовской онтологии или платоновский мир идей).

И действительно, эффективность распада известной Вселенной как целого по механизму гомогенного туннелирования Хокинга-Мосса, мягко говоря, незначительна: для квантового состояния «черного ящика», содержащего черную дыру массой с наблюдаемую Вселенную, время Пуанкаре оценивается как (((1010)10)10)2,08 лет.

Отмечу, что в современных исследованиях по космологии, выполненных после открытия темной материи, именно геометрию де Ситтера иногда предпочитают геометрии Минковского, для которой первоначально была сформулирована ОТО.

Интересно также заметить, что релятивистское расширение вновь возникшего пузыря истинного вакуума (как тот, что создан в экспериментах на Станции Мимоза) в специальном случае осциллирующей вселенной вообще не требует туннельного перехода.

Рассмотрим «карманную вселенную» (pocket universe), где фоновое скалярное поле Ф остается в метастабильном локальном минимуме энергии Фfalse в течение (очень долгого) времени Т. По истечении этого времени происходит переход в состояние истинного вакуума Фtrие. Евклидово действие для этого процесса фигурирует в экспоненте скорости туннелирования Ξ= Аехр(—2£(S)), где S- действие для туннелирования в классическом пределе, а А- множитель, учитывающий так называемые однопетлевые поправки. В первом приближении Коулмена-де Люччия оно равно:


£(S) = (π2/4)τ4€ + π2 τ3 S1 ,


где S1 — солитонный член, отвечающий самораспространяющимся решениям типа уединенных устойчивых волн, а — разность плотностей энергии локального и глобального минимумов некоторого потенциала скалярного поля V(Ф). Чтобы действие туннелирования оставалось конечным, примем V(Фfalse) = 0.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Лестница Шильда, роман"

Книги похожие на "Лестница Шильда, роман" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Грег Иган

Грег Иган - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Грег Иган - Лестница Шильда, роман"

Отзывы читателей о книге "Лестница Шильда, роман", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.