» » » » Игорь Беляев - Древнеарийская философия том 1 и том 2


Авторские права

Игорь Беляев - Древнеарийская философия том 1 и том 2

Здесь можно скачать бесплатно "Игорь Беляев - Древнеарийская философия том 1 и том 2" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России», год 2008. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Древнеарийская философия том 1 и том 2
Издательство:
Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России»
Жанр:
Год:
2008
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Древнеарийская философия том 1 и том 2"

Описание и краткое содержание "Древнеарийская философия том 1 и том 2" читать бесплатно онлайн.



Ни для кого не является секретом, что не так давно официальная точка зрения на вопрос происхождения мира была такова, что окружающий мир считался Сотворённым Богом. Собственно говоря, она и ныне встречается в любой религии.

Правда, в наше атеистическое время многие с усмешкой относятся к религиям, считая их предрассудками. Впрочем, времена меняются, и недавние атеисты встречаются среди представителей многочисленных религиозных конфессий.

Вдобавок, беспристрастный анализ внутреннего содержания логических структур религий приводит к весьма серьёзному и нестандартному выводу. Он заключается в том, что лежащие в основе любой религиозной философии и логики вовсе не являются нагромождением невежества, не могущего объяснить многие ежедневные нюансы нашей жизни.

Оказывается, что, с фундаментально глубинной позиции, все религии при поверхностном расхождении друг с другом внутренне оказываются в целом не только непротиворечивыми, но и сводятся к одной единственной схеме. И, как ни странно покажется такое на первый взгляд, первые упоминания о данной схеме затерялись в столь глубокой и седой древности, о которой человеческая память не смогла оставить даже самых смутных воспоминаний.

Она представляет собой древнеарийскую философию, великую мудрость седых тысячелетий, первоначально изложенную в священных книгах древних ариев – Ведах, Авесте, Ригведе и Велесовой книге. Ей посвящено уже великое множество работ, и данное произведение, конечно же, как оно следует, хотя бы из его названия, является одной из капелек данного бескрайнего океана.

В основном настоящий том посвящён изложению математических основ древнеарийской философии, и некоторых наиболее общих следствий из неё. С чисто научных позиций рассматриваются тайны вечных вопросов Бытия, смысла жизни и наших взаимоотношений с Мирозданием.

Одновременно показывается картина кризиса современной науки, отрицающей Бога и Сотворение Им окружающего мира. На фоне такого кризиса демонстрируются возможности древнего знания при анализе некоторых важных естественнонаучных проблем, являющихся камнем преткновения для учёных, свысока говорящих о том, что вера в Бога является предрассудком, подлежащим искоренению.

При написании настоящей книги автор старался уделять большое внимание доступности и простоте изложения материала. Он надеется, что это ему, пусть даже и частично, но удалось.






Однако, поскольку «краткий обзор избранной темы содержится уже во введении», то автор даёт возможность М. Клайну высказаться по данному вопросу без спешки, каких-либо изъятий, хотя и вкратце, ибо он такие вещи может делать. Принадлежащая его перу цитата целиком составляет содержимое следующего подпараграфа7.

О чём не часто говорят? Одни трагедии порождают войны, голод, чуму, другие – в мире идей – вызваны ограниченностью человеческого разума. Эта книга – горестный рассказ о бедствиях, выпавших на долю математики – наиболее древнего и не имеющего себе равных творений людей, плода их неустанных и многообразных усилий, направленных на использование способности человека мыслить.

Можно также сказать, что эта книга на общедоступном уровне повествует о расцвете и закате величия математики. Позволительно спросить: уместно ли говорить об упадке математики в наше время, когда её границы расширились, когда научная деятельность в области математики ведётся во всё возрастающих масштабах и достигла небывалого расцвета, когда ежегодно публикуются тысячи работ по математике, всё большее внимание привлекают вычислительные машины и когда поиск количественных соотношений захватывает всё новые области, особенно в биологических и социальных науках? В чём же причина трагедии? Прежде чем ответить на эти вопросы, следует напомнить, какие достижения математики снискали ей высочайший авторитет, всеобщее признание и славу.

С самого зарождения математической науки как самостоятельной отрасли знания (у колыбели которой стояли древние греки) и на протяжении более чем двух тысячелетий математики занимались поиском истины и добились на этом пути выдающихся успехов. Необозримое множество теорем о числах и фигурах, казалось, служило неисчерпаемым источником абсолютного знания, которое никогда и никем не может быть поколеблено.

За пределами самой математики математические понятия и выводы явились фундаментом замечательных научных теорий. И хотя новые факты устанавливались в результате сотрудничества математики и естествознания, опирающегося на данные, имеющие нематематический, скажем физический, характер, они казались столь же непреложными, как и принципы самой математики, потому что предсказания, которые делались на основе математических теорий в астрономии, механике, оптике и гидродинамике, необычайно точно совпадали с данными наблюдений и экспериментов. Математика давала ключ к глубокому постижению явлений природы, к пониманию, заменявшему тайну и хаос законом и порядком. Человек получил возможность с гордостью взирать на окружающий мир и заявлять, что ему удалось раскрыть многие тайны природы, по существу оказавшиеся серией математических законов. Убеждением в том, что истины открывают математики, проникнуто известное высказывание Лагранжа: «Ньютон был счастливейшим из смертных, ибо существует только одна Вселенная, и Ньютон открыл её законы».

Для получения своих удивительных, мощных результатов математика использовала особый метод – метод дедуктивных выводов из небольшого числа самоочевидных принципов, называемых аксиомами; этот метод знаком каждому школьнику – прежде всего из курса геометрии. Природа дедуктивного вывода такова, что она гарантирует истинность заключения, если только истинны исходные аксиомы. Очевидная, безотказная и безупречная логика дедуктивного вывода позволила математикам извлечь из аксиом многочисленные неоспоримые и неопровержимые заключения. Эту особенность математики многие отмечают и поныне. Всякий раз, когда нужно привести пример надёжных и точных умозаключений, ссылаются на математику.

Успехи, достигнутые математикой с помощью дедуктивного метода, привлекли к ней внимание величайших мыслителей. Математика наглядно продемонстрировала возможности и силу человеческого разума. Почему бы не воспользоваться, спросили мыслители, столь хорошо зарекомендовавшим себя дедуктивным методом для постижения истин там, где прежде безраздельно властвовали авторитет, традиция и привычка, – в философии, теологии, этике, эстетике и социальных науках? Человеческий разум, столь эффективный в математике и в математической физике, мог бы стать арбитром помыслов и действий также и в других областях, приобщив их к красоте истины и истинности красоты. В эпоху, получившую название эпохи Просвещения (или Века разума), методология математики и даже некоторые математические понятия и теоремы были применены к другим областям человеческой деятельности.

Обращение к прошлому – плодотворный источник познания настоящего. Созданные в начале XIX в. необычные геометрии и столь же необычные алгебры вынудили математиков исподволь – и крайне неохотно – осознать, что и сама математика, и математические законы в других науках не есть абсолютные истины. Например, математики с досадой и огорчением обнаружили, что несколько различных геометрий одинаково хорошо согласуются с наблюдаемыми данными о структуре пространства. Но эти геометрии противоречили одна другой – следовательно, все они не могли быть одновременно истинными. Отсюда напрашивался вывод о том, что природа построена не на чисто математической основе, а если такая первооснова и существует, то созданная человеком математика не обязательно соответствует ей. Ключ к реальности был утерян. Осознание этой потери было первым из бедствий, обрушившихся на математику.

В связи с появлением уже упоминавшихся новых геометрий и алгебр математикам пришлось пережить шок и другого рода. Математики настолько уверовали в бесспорность своих результатов, что в погоне за иллюзорными истинами стали поступаться строгостью рассуждений. Но когда математика перестала быть сводом незыблемых истин, это поколебало уверенность математиков в безукоризненности их теорий. Тогда им пришлось взяться за пересмотр своих достижений, и тут они, к своему ужасу, обнаружили, что логика в математике совсем не так уж и тверда, как думали их предшественники.

По существу развитие математики имело алогичный характер. Это алогичное развитие включало в себя не только неверные доказательства, но и пропуски в доказательствах и случайные ошибки, которых можно было бы избежать, если бы математики действовали бы более осмотрительно. Такие досадные изъяны отнюдь не были редки. Но алогичность развития математики заключалась также в неадекватном толковании понятий, в несоблюдении всех необходимых правил логики, в неполноте и недостаточной строгости доказательств. Иными словами, чисто логические соображения подменялись интуитивными аргументами, заимствованными из физики, апелляциями к наглядности и ссылками на чертежи.

Но и когда всё это было установлено, математика по-прежнему оставалась эффективным средством описания природы. Кроме того, математика сохранила привлекательность и сама по себе как область чистого знания, и в умах многих, особенно пифагорейцев, являлась частью реальности, представляющей самостоятельный интерес. Учитывая это, математики решили восполнить пробел в логическом каркасе своей науки и перестроить заново те её части, в которых обнаружились изъяны. Движение за математическую строгость приобрело широкий размах во второй половине XIX в.

К началу XX в. математики стали склоняться к мнению, что желанная цель, наконец, достигнута. И хотя им пришлось признать, что математика даёт лишь приближённое описание природы, и многие утратили веру в то, что природа основана на математических принципах, математики по-прежнему продолжали возлагать большие надежды на проводимую ими реконструкцию логической структуры математики. Но не успели смолкнуть восторги по поводу якобы достигнутых успехов, как в реконструированной математике в свою очередь обнаружились противоречия. Обычно эти противоречия принято называть парадоксами – эвфемизм, позволяющий тем, кто его использует, обходить молчанием кардинальное обстоятельство: там, где есть противоречия, там нет логики.

Ведущие математики и философы начала XX в. сразу же попытались разрешить возникшие противоречия. В результате возникло четыре подхода к математике, которые отчётливо сформулированы и получили значительное развитие; у каждого из этих подходов нашлось немало приверженцев. Все четыре направления стремились не только разрешить известные противоречия, но и гарантировать, что в будущем не появятся новые противоречия, то есть, старались доказать непротиворечивость математики. Интенсивная разработка оснований математики привела к другим результатам. Приемлемость некоторых аксиом и принципов логики дедуктивного вывода также стала яблоком раздора: позиции школ по этим вопросам разошлись.

В конце 30-х годов XX в. математик мог бы принять один из нескольких вариантов оснований математики и заявить, что проводимые им математические доказательства, по крайней мере, согласуются с догматами избранной им школы. Но тут последовал удар ужасающей силы: вышла в свет работа Курта Гёделя, в которой он, среди прочих важных и значительных результатов, доказал, что логические принципы, принятые различными школами в основаниях математики, не позволяют доказать её непротиворечивость. Как показал Гёдель, непротиворечивость математики невозможно доказать, не затрагивая самих логических принципов, замкнутость которых весьма сомнительна. Теорема Гёделя вызвала смятение в рядах математиков. Последующее развитие событий привело к новым осложнениям. Оказалось, например, что даже аксиоматический дедуктивный метод, столь высоко ценимый в прошлом как надёжный путь к точному знанию, небезупречен. В результате этих открытий число различных подходов к математике приумножилось, и математики разбились на ещё большее число группировок.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Древнеарийская философия том 1 и том 2"

Книги похожие на "Древнеарийская философия том 1 и том 2" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Игорь Беляев

Игорь Беляев - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Игорь Беляев - Древнеарийская философия том 1 и том 2"

Отзывы читателей о книге "Древнеарийская философия том 1 и том 2", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.