Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Пространства, времена, симметрии. Воспоминания и мысли геометра"
Описание и краткое содержание "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать бесплатно онлайн.
Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.
Симплектическая и метасимплектическая геометрии Фрейденталя
В серии работ под общим названием "Отношения групп Е7 и Е8 к октонионной плоскости", опубликованной в 1954 -1963 гг., Фрейденталь нашел геометрические интерпретации некоторых некомпактных простых групп Ли классов F4, Е6, Е7 и Е8 Фрейденталь ввел понятие 5-мерного октонионного симплектического пространства. Это пространство нельзя определить как проективное пространство с более узкой группой преобразований. так как над алгеброй О не существует проективных пространств размерности больше 2. Фрейденталь называл 5-мерным октонионным симплектическим пространством только аналог многообразия 2-мерных нуль-плоскостей 5-мерного кватернионного симплектического пространства. Фрейденталь доказал, что группа симплектических преобразований этого пространства является некомпактной простой группой Ли класса Е7 с характером -25.
В той же серии работ Фрейденталь определил четыре метасимплектические геометрии - вещественную, комплексную, кватернионную и октонионную, и доказал, что группами преобразований этих геометрий являются, соответственно, расщепленная простая группа Ли класса F4 и некомпактные вещественные простые группы Ли класса Е6 с характером -26, класса Е7 с характером -25 и класса Е8 с характером - 24.
В моих дальнейших работах я доказал, что расщепленная простая группа Ли класса Е7 локально изоморфна группе симплектических преобразований псевдооктонионного аналога 5-мерного симплектического пространства Фрейденталя, а расщепленные простые группы Ли классов F4, Е6, Е7 и Е8 локально изоморфны группам преобразований псевдооктонионных аналогов метосимплектических геометрий Фрейденталя.
Изоморфизмы групп преобразований этих геометрий и групп движений эрмитовых эллиптических плоскостей над различными алгебрами определяют интерпретации этих геометрий на указанных плоскостях.
В той же серии работ Фрейденталь определил "магический квадрат", состоящий из 16 простых и полупростых групп Ли, расположенных в виде квадрата. В 1-й строке этого квадрата находятся группы движений 2- мерных вещественной эллиптической плоскости и комплексной кватервионной и октонионной эрмитовых эллиптических плоскостей, во 2-й строке - группы проективных преобразований 2-мерных вещественной, комплексной, кватернионной и октонионной проективных плоскостей, в 3- ей строке - группы симплектических преобразований 5-мерных вещественного, комплексного, кватернионного и октонионного симплектических пространств, в 4-ой строке - группы преобразований вещественной, комплексной, кватернионной и октонионной метасимплектических геометрий. Название метасимплектических геометрий определяется их положением в этом квадрате после симплектических пространств.
Этот квадрат обладает замечательным свойством симметрии: группы симметричные относительно главной диагонали квадрата являются группами одного и того же класса и ранга. Эта симметрия следует из того, что группы 2-й строки этого квадрата изоморфны группам движений эрмитовых эллиптических плоскостей над тензорными произведениями алгебр R, C, H и О на алгебру C', группы 3-ей строки этого квадрата изоморфны группам движений эрмитовых эллиптических плоскостей над тензорными произведениями алгебр R, C, H и О на алгебру H', группы 4-й строки этого квадрата изоморфны группам движений эрмитовых эллиптических плоскостей над тензорными произведениями алгебр R, C, H и О на алгебру О'.
Заменяя в этом квадрате алгебры C', H' и О' полем С и телами Н и О, мы получим "магический квадрат" для компактных групп. Заменяя в квадрате Фрейденталя поле С и тела Ни О алгебрами C', H' и О', мы получим "магический квадрат" для расщепленных групп.
Если мы заменим в "магическом квадрате" Фрейденталя для компактных групп каждую группу движений эллиптической плоскости прямой линией этой плоскости, мы получим аналог квадрата Фрейденталя эрмитовы эллиптические прямые над тензорными произведениями алгебр R, C, H, О на алгебру H, третьей строке - эрмитовы эллиптические прямые над тензорными произведениями алгебр R, C, H, О на алгебру H, в четвертой строке - эрмитовы эллиптические прямые над тензорными произведениями алгебр R, C, H, О на алгебру О.
Прямые линии первой строки изометричны, соответственно, вещественной окружности и вещественным сферам 2, 4 и 8 измерений и поэтому допускают интерпретации в виде многообразий точек вещественной эллиптической прямой, прямых вещественной эллиптической плоскости, 3-мерных плоскостей 4-мерного вещественного эллиптического пространства и 7-мерных плоскостей 8-мерного вещественного эллиптического пространства. Прямые второй строки допускают интерпретации в виде многообразий точек вещественной эллиптической плоскости, прямых 3-мерного вещественного эллиптического пространства, 3-мерных плоскостей 5-мерного вещественного эллиптического пространства и 7-мерных плоскостей 9-мерного вещественного эллиптического пространства. Прямые третьей строки допускают интерпретации в виде мнгообразий точек 4-мерного вещественного эллиптического пространства, прямых 5-мерного вещественного эллиптического пространства, 3-мерных плоскостей 7-мерного вещественного эллиптического пространства и 7-мерных плоскостей 11-мерного вещественного эллиптического пространства. Прямые четвертой строки допускают интерпретации в виде мнгообразий точек 8- мерного вещественного эллиптического пространства, прямых 9-мерного вещественного эллиптического пространства, 3-мерных плоскостей 11- мерного вещественного эллиптического пространства, 7-мерных плоскостей 15-мерного вещественного эллиптического пространства.
Фрейденталь рассматривал в метасимплектических геометриях симплекты, т.е. многообразия 2-мерных нуль-плоскостей 5-мерных симплектических пространств, a также 2-мерные плоскости симплектов, прямые и точки этих плоскостей. Все эти образы являются фундаментальными параболическими образами метасимплектических геометрий, рассматриваемых Фрейденталем, причем в указанных геометриях все эти образы вещественны, а остальные фундаментальные образы мнимы. Точки плоскостей симплектов совпадают с точками абсолютов соответственных 2-мерных эрмитовых плоскостей.
Пересечение прямых линий эрмитовых эллиптических плоскостей, группы движений которых максимальные особые группы Ли.
В 2003г. Э.Б.Винберг обнаружил, что две прямые линии эрмитовой эллиптической плоскости над тензорным произведением алгебр H и О пересекаются не в одной, а в трех точках, и что две прямые линии эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О пересекаются в 135 точках. Из уравнения прямой линии SjUjXj= 0 на этих плоскостях вытекает, что ассоциативные подалгебры тензорных произведений алгебр H и О и двух алгебр О, связанные с общими точками двух прямых эрмитовых эллиптических плоскостей, - одни и те же. Так как максимальная ассоциативная подалгебра алгебры О - алгебра H, а эрмитова эллиптическая прямая над тензорным произведением двух алгебр H 16- мерна, все 135 общих точек двух прямых на эрмитовой и эллиптической плоскости над тензорным произведением двух алгебр О находятся в 16- мерном подмножестве каждой из этих эрмитовых эллиптических прямых. Эти 135 точек изображаются 7-мерными плоскостями, находящимися в одной 9-мерной плоскости 15-мерного эллиптического пространства, изображающего прямую над тензорным произведением двух алгебр О. Так как полярами 7-мерных плоскостей в 9-мерном эллиптическом пространстве являются прямые линии, 135 общих точек двух прямых линий на эрмитовой эллиптической плоскости над тензорным произведением двух алгебр О изображаются 135 прямыми линиями 9-мерного вещественного эллиптического пространства. Эти прямые линии лежат в 4-мерной плоскости 9-мерного эллиптического пространства.
Группы Вейля простых групп Ли
С каждой компактной простой группой Ли связаны две конечные группы - группа Галуа уравнения Киллинга компактной простой группы Ли и группа Вейля, порожденная отражениями от гиперплоскостей эвклидова пространства, размерность которой равна рангу компактной группы, проходящих через общее начало корневых векторов компактной простой группы Ли ортогонально этим векторам. Эти группы обозначаются, соответственно, Г и W. Эти две группы изоморфны для всех компактных простых групп Ли, кроме групп классов An, Dn и Е6, в случае же групп этих классов группа W является инвариантной подгруппой гриппы Г, причем фактор-группы Г/W во всех случаях кроме случая группы класса D4состоят из двух элементов, а для группы D4 фактор гуппа Г/W состоит из 3!=6 элементов. Этот факт тесно связан с принципами двойственности и тройственности в пространствах, фундаментальные группы которых являются простые группы Ли классов An, Dn и Е6.
Группа Вейля компактной простой группы Ли класса An изоморфна группе симметрий n-мерного правильного симплекса, Группа Вейля компактной простой группы Ли класса An изоморфна группе симметрий n- мерного правильного симплекса, Группы Вейля компактных простых группы Ли классов Bn и Cn изоморфны группе симметрий n-мерного куба. Группа Вейля компактной простой группы Ли класса Dn изоморфна группе симметрий n-мерного "полукуба", т.е. фигуры, получаемой из n-мерного куба удалением одной из каждых двух вершин, соединяемых ребрами куба.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Пространства, времена, симметрии. Воспоминания и мысли геометра"
Книги похожие на "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра"
Отзывы читателей о книге "Пространства, времена, симметрии. Воспоминания и мысли геометра", комментарии и мнения людей о произведении.