» » » » Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра


Авторские права

Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Здесь можно скачать бесплатно "Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
Рейтинг:
Название:
Пространства, времена, симметрии. Воспоминания и мысли геометра
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Пространства, времена, симметрии. Воспоминания и мысли геометра"

Описание и краткое содержание "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать бесплатно онлайн.



Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.

Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.






Образы симметрии

Все вещественные и эрмитовы неевклидовы пространства, группы движений которых простые группы Ли, изометричны симметрическим римановым или псевдоримановым пространствам, поэтому точки этих пространств являются образами симметрии. Образами симметрии являются также 0-пары ( т.е. пары точка + гиперплоскость) проективных пространств и m-пары (т.е.пары n-m-1)-мерная плоскости n-мерного проективного пространства. Отражение точки Х от 0-пары, состоящей из точки А и гиперплоскости U, переводит точку Х в точку X' прямой АХ, являющуюся четвертой гармонической для точек А, Х и точки пересечения прямой АХ с гиперплоскостью U. Отражение точки Х от m-пары, состоящей из плоскостей А и U, переводит точку Х в точку X' единственной прямой, проходящей через точку Х и пересекающей плоскости А и U, которая является четвертой гармонической для точки Х и точки пересечения упомянутой прямой А с плоскостями А и U.

В неевклидовых пространствах, являющихся метризованными проективными, образами симметрии являются также m-мерные плоскости, при m = 1 прямые линии образующие вместе с плоскостями полярными относительно абсолютов m-пары.

При рассмотрении вещественных и эрмитовых неевклидовых пространств с простыми группами движений я всегда находил образы симметрии этих пространств. Особенно просто это в случае пространст с компактными группами движений, так как инволютивные движения, определяющие образы симметрии этих пространств, определяют также некомпактные группы с той же комплексной формой, что и компактная простая группа Ли. Замечу, что диаграммы Сатаке для некомпактных простых групп Ли первоначально применялись для изучения симметрических римановых пространств с некомпактными простыми группами движений. Эти симметрические пространства допускают интерпретации в виде многообразий образов симметрии неевклидовых пространств с компактными группами движений.

Образами симметрии неевклидовых пространств кроме точек и m- мерых плоскостей являются паратактические конгруенции и n-цепи. Паратактические конгруенции имеют место в (2n + 1)-мерных вещественных эллиптических и комплексных эрмитовых эллиптических пространствах, они состоят из заполняющих все пространство паратактичных прямых, т.е. прямых с равными стационарными расстояниями. Симметриями относительно этих конгруенций в случае вественных пространств являются сдвиги на полупрямую вдоль прямых конгруенции, а в случае комплексных пространст - переходы от точек прямых линий конгруенции к диаметрально противоположным точкам сфер изометричным этим линиям.

Нормаьные n-цепи имеют место в n-мерных комплексных и кватернионных эрмитовых эллиптических пространствах. Эти образы состоят из точек с соответственно вещественными или комплексными координатами или являются фигурами, получяемыми из этих образов движениями пространства. Симметрии относительно нормальных n-цепей определяются переходами от комплексных координат к комплексно сопряженным и от кватернионных координат вида a+bi+cj+dk к координатам вида a+bi-cj-dk. Нормальные n-цепи изометричны, соответственно, n-мерным вещественному эллиптическому и комплексному эрмитову эллиптическому пространствам.

В проективных просранствах имеются также образы косимметрии - гиперквадрики и линейные комплексы прямых, симметриями относительно которых являются полярные преобразования относительно этих образов.

Две m-пары проективного пространства в основном случае обладают m + 1 директрисами - прямыми пересекающими все четыре плоскости m- пар. Директрисы являются геометрическими ковариантами двух m-пар, а двойные отношения точек их пересечения с плоскостями m-пар - числовыми инвариантами n-пар.

Общие перпендикуляры двух m-мерных плоскостей являются директрисами этих плоскостей и их полярных плоскостей, а стационарные расстояния двух m-мерных плоскостей определяются числовыми инвариантами соответственны m-пар.

Параболические образы

В пространствах, группы движений которых - простые группы Ли, я находил параболические образы, определяемые параболическими подгруппами группы движений пространтва, т.е. подгруппами, содержащими максимальную разрешимую подгруппу группы движений, называемую подгруппой А.Бореля. Всякая параболическая подгруппа определяется одним или несколькими простыми корневыми векторами группы Ли. В случае, когда параболическая подгруппа определяется одним простым корневым вектором, пораболический образ называется фундаментальным. Все параболические образы вещественны в случае расщепленных групп, все эти образы мнимы в случае компактных групп. Эти образы могут быть вещественными, мнимыми и комплексно сопряженными в случае некомпактных нерасщепленных групп.

Параболические образы изучались И.М.Гельфандом и его сотрудниками и Хариш-Чандрой в связи с теорией унитарных представлений некомпактных простых групп Ли.

Фундаментальные параболические образы связаны с фундаментальными линейными представлениями простых групп Ли, определенными Э.Картаном в 1913 г. Эти образы изучались Жаком Титсом, который называл их фундаментальными элементами.

Фундаментальными параболическими образами в случае n-мерного вещественного проективного пространства являются m-мерные плоскости (при m=0 точки, при m = 1 прямые линии, при m= n-1 - гиперплоскости).

Фундаментальными параболическими образами в случае 2n-мерных и (2n-1) -мерных вещественных неевклидовых пространств являются m-мерные плоские образующие абсолюта (при m=0 точки, при m = 1 прямолинейные образующие). Плоские образующие максимальной размерности абсолютов этих пространств (n-1) -мерны, эти плоские образующие составляют одно связное семейство в 2n-мерном пространстве и два связных семейства в (2n-1) -мерном пространстве. В последнем случае (n-2) -мерные плоские образующие - параболические образы не являющиеся фундаментальными. Плоские образующие максимальной размерности абсолютов вещественных неевклидовых пространств связаны со спинорными представлениями групп движений этих пространств.

Фундаментальными параболическими образами в случае (2n-1)- мерного вещественного симплектического пространства являются точки и m-мерные нуль-плоскости (при m = 1 нуль-прямые). Нуль-прямые вещественного симплектического пространства образуют абсолютный линейный комплекс этого пространства.

Фундаментальные параболические образы комплексных и кватернионных проективных и эрмитовых неевклидовых и симплектических пространств аналогичны параболическим образам вещественных пространств. Параболическими образами конформных и псевдоконформных пространств являются их точки и m-мерные изотропные плоскости, при m = 1 - изотропные прямые.

Фундаментальные параболические образы пространств, фундаментальными грппами которых являются простые группы Ли, изображаются точками диаграмм Дынкина и Сатаке. В последнем случяе черные точки диаграмм Сатаке изображают вещественные образы, белые точки - мнимые образы, а белые точки, соединенные дугами с двумя стрелками, - комплексно сопряженные образы.

Со всяким параболическим образом связано представление фундаментальной группы пространства в виде прямой суммы 2k+1 линейных подпространств J + K+... + L. Подпространства J и L этой прямой суммы являются элластичными алгебрами, определенными И.Л.Кантором. В случае k =1 aлгебры J и L являются йордановыми алгебрами М.А.Джавадов и И.И.Колокольцева доказали, что спонорные предстаавлениягрупп движений неевклидобых пространств изображаются дробно-линейными преобра­зованиями этих йордановых алгебр.

Геометрические интерпретации, связанные с изоморфизмами простых и полупростых групп Ли

Упомянутые выше изоморфизмы простых и полупростых групп Ли ранга 1, 2 и3 определяют изоморфизмы вещественных простых и полупростых групп Ли с теми же рангами. С этими изоморфизмами вещественных групп Ли связаны геометрические интерпретации однородных пространств, фундаментальными группами которых являются эти группы Ли.

1) С локальным изоморфизмом компактных групп классов A1 и B1 связана изометричность комплексной эрмитовой эллиптической прямой линии кривизны 1/r2 и сферы радиуса r/2 3-мерного евклидова пространства.

С локальным изоморфизмом расщепленных групп классов A1 и B1 связана интерпретация О.Гессе плоскости Лобачевского на вещественной проективной прямой, при которой точки проективной прямой изображаются точками абсолюта плоскости Лобачевского, а пара точек проективной прямой - прямыми линиями плоскости Лобачевского.

С локальным изоморфизмом компактной группы класса D2 и прямого произведения двух компактнх групп класса А связана интерпретация А.П.Котельникова многообразия прямых линий 3-мерного вещественного эллиптического пространства на сфере двойного 3-мерного евклидова пространства, при которой пара полярно сопряженных прямых линий эллиптического пространства изображаются 4 точками пересечения сферы двойного пространства с диаметральными прямыми этой сферы.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Пространства, времена, симметрии. Воспоминания и мысли геометра"

Книги похожие на "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Борис Розенфельд

Борис Розенфельд - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра"

Отзывы читателей о книге "Пространства, времена, симметрии. Воспоминания и мысли геометра", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.