» » » » Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра


Авторские права

Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Здесь можно скачать бесплатно "Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
Рейтинг:
Название:
Пространства, времена, симметрии. Воспоминания и мысли геометра
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Пространства, времена, симметрии. Воспоминания и мысли геометра"

Описание и краткое содержание "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать бесплатно онлайн.



Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.

Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.






Проектируя гиперсферу мнимого радиуса в псевдоевклидовом пространстве индекса 1 из ее центра на касательную гиперплоскость к ней, мы получим модель гиперболического пространства в шаре евклидива пространства, в которой прямые линии гиперболического пространства изображаются диаметрами и хордами шара, а параллели Лобачевского- хордами, имеющими один общий конец. Эта модель по существу совпадает с проективной моделью.

Проектируя ту же гиперсферу из одной ее точки на касательную гиперплоскость в диаметрально противоположной точке, мы получим другую модель гиперболического пространства в шаре евклидова пространства. В этой модели прямые линии гиперболического пространства изображаются диаметрами шара и дугами окружностей ортогональных к гиперсфере, ограничивающей шар. В этой проекции углы между линиями изображаются в натуральную величину. Эта модель является конформной моделью, а определяющая ее проекция - аналог стериографической проекции.

Применяя аналогичные проекции к гиперсферам, определяющим другие неевклидовы пространства, мы получим конформные модели этих пространств. Эти модели можно рассматривать как модели конформного и псевдоконформных пространств.

Симплектическим пространством размерности 2n-1 называется проективное пространство той же размерности, в котором задана кососимметрическая билинейная форма (a,b) = - (b,a). Прямые линии АВ, определяемые точками А и В, представляемыми векторами а и b, для которых (a,b) = 0, называются нуль -прямыми, они образуют линейный комплекс прямых. Проективные преобразования, переводящие в себя этот линейный комплекс, называются симплектическими преобразованиями.

Первоначально эти преобразования назывались преобразованиями линейного комплекса, а группа этих преобразований называлась комплекс- группой (Komplex-Gruppe). Когда Герман Вейль переехал из Германии в США и стал называть комлекс - группу complex group, он увидел, что это неудобно, так как эти же слова означают "комплексная группа". Поэтому он предложил называть эту группу симплектической, переведя латинское слово complexus - "сложный" греческим словом symplektikos. Преобразования и пространство также стали называть симплектическими.

Симплектическим пространством размерности 2n называется аффинное пространство той же размерности, в котором определено кососимметрическое скалярное произведение векторов (a,b) = -(b,a).

Топологическое пространство, каждая точка которого обладает окрестностью гомеоморфной n-мерному евклидову пространству, называется n-мерным многообразием. В каждой такой окрестности можно ввести координаты, определяемые координатами в евклидовом пространстве.

В том случае, когда в каждом пересечении таких окрестностей переход от одной системы координат к другой задается дифференцируемыми или аналитическими функциями, многообразие называется, соответственно, дифференцируемым или аналитическим.

В каждой точке дифференцируемого многообразия можно определить касательное линейное пространство. Координаты векторов этого простран­ства являются дифференциалами координат точек многообразия.

Если в касательном пространстве каждой точки n-мерного диф­ференцируемого многообразия определено скалярное произведение n- мерного евклидова пространства или n-мерного пседоевклидова пространства индекса k, мы получим, соответственно, n-мерное риманово пространство или псевдориманово пространство индекса k. В римановых и псевдоримановых пространствах можно определить длину линии, угол между пересекающимися линиями, геодезические (кратчайшие) линии и площадь участка двумерной поверхности.

Если из точки А риманова пространства выходят геодезические линии АВ и АС, и углы геодезического треугольника АВС при его вершинах обозначены теми же буквами A, B, C, то предел отношения разности А+В+С-п, где углы А,В,С измерены в радианной мере, к площади треугольника АВС при стремлении точек В и С к А называется секционной кривизной риманова пространства в точке А в данном двумерном направлении.

Эллиптическое и гиперболическое пространства являются частными случаями риманова пространства. Так как площадь всякого прямолинейного треугольника АВС в эллиптическом пространстве, получаемом из гиперсферы радиуса r, равна r (A+B+C-п), эллиптическое пространство является римановым пространством постоянной положительной кривизны 1/r2. Taк как площадь всякого прямолинейного треугольника АВС в гиперболическом пространстве, получаемом из гиперсферы мнимого радиуса r, равна r (A+B+C-pi),, гиперболическое пространство является римановым пространством постоянной отрицательной кривизны -1/q2.

Aналогично определяется секционная кривизна в двумерном направлении в псевдоримановом пространстве.

Если в дифференцируемом многообразии для всяких двух бесконечно близких точек определено аффинное отображение касательных пространств в этих точках, многообразие называется пространством аффинной связности.

Если в римановом или псевдоримановом пространстве или в пространстве аффинной связности отражение от каждой точки по геодезическим линиям не изменяет расстояний между точками или сохраняет аффинную связность, пространство называется симметрическим пространством.

Геометрии вещественных евклидовых, псевдоевклидовых, неевклидовых, симметрических, римановых и псевдоримановых пространств посвящены многие главы моих книг 1955, 1966, 1969 и 1997 гг. При этом особое внимание я уделял интерпретациям неевклидовых пространств, так как считаю интерпретации "стереоскопическим зрением геометра", ибо свойства неевклидовых пространств, которые отличаются от свойст евклидова пространства и ускользают от нашего внимания в одних интерпретациях, хорошо видны в других интерпретациях.

Комплексные и кватернионные пространства

Комплексное квадратичное евклидово пространство определяется так же, как вещественное. Это же пространство является комплексной формой всех вещественных псевдоевклидовых пространств той же размерности. В случае комплексного и кватернионного эрмитовых евклидовых пространств скалярный квадрат (а,а) является вещественной положительно определенной эрмитовой формой, а в случае комплексного и кватернионного эрмитовых псевдоевклидовых пространств индекса k скалярный квадрат (а,а) является вещественной знаконеопределенной эрмитовой формой индекса k.

Расстояние между точками А и В эрмитова евклидова или псевдоевклидова пространства равно квадратному корню из скалярного квадрата (а,а) вектора а=АВ. Нетрудно проверить, что n-мерные комплексное и кватернионное эрмитовы евклидовы пространства изометричны, соответственно, 2n-мерному и 4n-мерному вещественным евклидовым пространствам, а комплексное и кватернионное эрмитовы псевдоевклидовы пространства индекса k изометричны, соответственно, 2n-мерному вещественному псевдоевклидову пространству индекса 2k и 4n-мерному вещественному псевдоевклидову пространству индекса 4k.

Движениями эрмитовых евклидовых и псевдоевклидовых пространств называются аффинные преобразования этих пространств, сохраняющие расстояния между точками.

Если а и b - два вектора комплексного или кватернионного эрмитова пространства, изображаемые в вещественных пространствах ортогональными векторами, то их скалярное произведение (a,b) равно ucos j, где u в случае комплексного пространства - мнимая единица i, a в случае кватернионного пространства - кватернион bi +cj +dk единичного модуля, а j называется углом голоморфности. Угол j равен 0, когда векторы а и b принадлежат одной прямой линии, и равен п/2, когдя эти векторы принадлежат одной нормальной n-цепи, т.е. множеству точек с вещественными координатами или тому, что получается из этого множества точек при движении пространства. Двумерные площадки, для которых j=0, называются голоморфными, а двумерные площадки, для которых j=n/2, называются антиголоморфными.

Аналогично, угол голоморфии и голоморфные и антиголоморфные двумерные площадки определяются в комплексных и кватернионных эрмитовых псевдоевклидовых пространствах.

Точки n-мерных комплексного и кватернионного эрмитовых эллиптических пространств можно представить прямыми линиями (n + 1)- мерных эрмитовых евлидовых пространств над полем С или телом Н, проходящими через одну точку, причем расстояние d между точками равно произведению угла между прямыми на число r, связанное с векторами а и b, направленными по прямым, представляющим эти точки соотношениями R2 = (a,a) = (b,b). Поэтому cos2(d/r) = (a,b)(b,a)/(a,a)(b,b). Отсюда следует, что комплексное и кватернионное эрмитовы эллиптические пространства можно определить как проективное пространство над полем С или телом Н, в котором задано расстояние d между точками А и В, представленными векторами а и b, по указанному равенству. Правая часть этого равенства равна двойному отношению точек А и В и точек пересечения полярных гиперплоскостей этих точек относительно эрмитовой гиперквадрики (x,x)=0 с прямой АВ.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Пространства, времена, симметрии. Воспоминания и мысли геометра"

Книги похожие на "Пространства, времена, симметрии. Воспоминания и мысли геометра" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Борис Розенфельд

Борис Розенфельд - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра"

Отзывы читателей о книге "Пространства, времена, симметрии. Воспоминания и мысли геометра", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.