Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
И что самое замечательное, на приведенном рисунке Гипотеза Римана сияет во всем своем блеске. Смотрите: нетривиальные нули и в самом деле все выстроились на критической прямой. На рисунке 13.6 критическая прямая не проведена, но совершенно ясно, что она лежит посередине критической полосы, как разделительная полоса на шоссе.
VIII.
Еще пара картинок, прежде чем мы покончим с темой наглядного представления дзета-функции. Во-первых, заметим, что при продвижении вверх общая тенденция, наблюдаемая на рисунке 13.6, сохраняется в тех пределах, до которых мы можем добраться.
Для иллюстрации этого на рисунке 13.7 показан блок нулей вблизи точки 1/2 + 100i. Можно заметить, что они упакованы теснее, чем нули на рисунке 13.6. В действительности средний интервал между восемью показанными здесь нулями равен 2,096673119…, тогда как для пяти нулей, показанных на рисунке 13.6, средний интервал составлял 4,7000841…. Таким образом, здесь, наверху — в окрестности числа 100i на мнимой оси, — нули упакованы более чем в два раза плотнее, чем в окрестности числа 20i.
Рисунок 13.7. Более высоко расположенная область на плоскости аргумента.
Ha самом деле имеется правило, позволяющее найти средний интервал между нулями на высоте T в критической полосе. Этот интервал ~ 2π/ln (T/2π). Если T равно 20, то это выражение вычисляется как 5,4265725…. Если T равно 100, то оно равно 2,270516724…. Как можно видеть, правило не слишком точное, хотя знак волны говорит нам, что оно становится все точнее по мере того, как числа растут. Эндрю Одлыжко опубликовал список 10 000 нулей в окрестности числа 1/2 + 1370919909931995308897i. Там за 2π/ln (T/2π) дают что-то около 0,13516467, а среднее, вычисленное для 9999 интервалов, равно 0,13417894…. Не так плохо!
Остановимся на еще одном моменте, который окажется довольно важным в дальнейшем изложении. Имеется симметрия относительно вещественной (т.е. идущей с запада на восток) оси. Если продлить рисунок 13.6 на юг от вещественной оси, линии окажутся зеркальными отображениями линий из северной половины. Единственная разница состоит в том, что если вещественные числа, отмеченные на рисунке 13.6, будут одинаковыми на юге и на севере, то мнимые числа поменяют знак. Математически это выражается так, что если ζ(a + bi) = u + vi, то ζ(a − bi) = u − vi. Или, если по-настоящему использовать язык комплексных чисел, ζ(z') = ζ'(z). Важное следствие отсюда состоит в том, что если a + bi — нуль дзета-функции, то a − bi — тоже нуль.
IX.
И наконец, графическое представление Гипотезы Римана — или по крайней мере того факта, что на критической прямой полно нулей.
Чтобы разобраться в рисунке 13.8, вспомним, что рисунки 13.6 и 13.7 изображают плоскость аргумента. Функция комплексной переменной отправляет комплексные числа из одного множества (аргументы) в другое множество (значения). Поскольку комплексные числа располагаются на плоскости, можно представлять себе, что функция отправляет точки из одной плоскости (плоскости аргумента) в точки на другой плоскости (плоскости значений). Дзета-функция отправляет точку 1/2 + 14,134725i на плоскости аргумента в точку 0 на плоскости значений. Взглянем снова на рисунок 13.2. Там плоскость аргумента и плоскость значений показаны одновременно — как если бы это были наложенные друг на друга прозрачные пленки для проектора.
Рисунки 13.6 и 13.7 изображают плоскость аргумента; там указано, какие аргументы отправляются в интересные нам значения. Муравей Арг живет на плоскости аргумента — потому его так и назвали. Он бродит по этой плоскости, отмечая, какие точки отправляются в нули при применении дзета-функции. Он у нас путешествовал по странным кривым и завиткам, образованным точками, которые отправляются в чисто вещественные или чисто мнимые числа (т.е. точками, в которых дзета-функция имеет чисто вещественные или чисто мнимые значения). Будем говорить, что это — изображения плоскости аргумента типа «отсюда», имея в виду, что отсюда дзета-функция отображает во что-то интересное.
Альтернативным способом функцию можно представить, показав картинку типа «сюда» на плоскости значений.[115] Вместо того чтобы показывать, как это делалось на рисунках 13.6 и 13.7, какие аргументы отправляются в интересные нам значения (а такими у нас были чисто вещественные и чисто мнимые числа), можно дать картину плоскости значений, на которой будет показано, в какие значения отображаются интересующие нас аргументы.
Представим себе, что у муравья Арга есть брат-близнец, который живет на плоскости значений.{A4} Зовут его, понятно, муравей Знач. И допустим еще, что близнецы постоянно общаются между собой по рации и таким способом синхронизируют свои передвижения, так что, на каком бы аргументе ни находился муравей Арг в любой момент времени, муравей Знач стоит на соответствующем значении в плоскости значений. Если, например, муравей Арг стоит на числе 1/2 + 14,134725i, а на его приборчике выставлена дзета-функция, то муравей Знач стоит на числе 0 в своей плоскости (плоскости значений).
Предположим теперь, что муравей Арг, вместо того чтобы ползать по всем этим причудливым завитушкам, изображенным на рисунке 13.6 (что заставляет муравья Знача скучать, вышагивая взад и вперед по вещественной и мнимой осям), предпримет прогулку прямо по критической прямой, направляясь на север из аргумента 1/2. По какой траектории будет тогда следовать муравей Знач? Это показано на рисунке 13.8. Его путь начинается в точке ζ(1/2), что, как мы видели в главе 9.v, равно −1,4603545088095…. Далее он описывает нечто вроде полуокружности против часовой стрелки ниже нулевой точки, а затем поворачивает и движется по петле по часовой стрелке вокруг точки 1. Он держит путь к нулю и проходит через него (это первый нуль — муравей Арг как раз прошел точку 1/2 + 14,134725i). Затем он продолжает описывать петли по часовой стрелке, проходя через нулевую точку снова и снова через некоторый промежуток — всякий раз, как его брат-близнец наступает на нуль дзета-функции на плоскости аргумента. Я прервал путешествие Знача, когда муравей Арг достиг точки 1/2 + 35i, потому что рисунок 13.6 продолжается лишь до этих пор. К тому моменту, как эта точка достигнута, кривая на плоскости значений прошла через нуль пять раз, что соответствует пяти нетривиальным нулям на рисунке 13.6. Отметим, что точки на критической прямой демонстрируют выраженную тенденцию к тому, чтобы отображаться в точки с положительной вещественной частью.
Рисунок 13.8. Плоскость значений; показаны точки, которые приходят из критической прямой.
Еще раз: на рисунке 13.8 показана плоскость значении. Это не диаграмма типа «отсюда», подобная рисункам 13.6 и 13.7; наоборот, это диаграмма типа «сюда», которая показывает, что же дзета-функция делает с критической прямой, подобно тому как на рисунке 13.2 было показано, что функция возведения в квадрат делаете расчерченным квадратиком. Если мы желаем выражаться чисто математически, то следует сказать, что завивающаяся в петли кривая на рисунке 13.8 есть ζ(критическая прямая) — множество всех точек, которые происходят из точек на критической прямой. Кривые на рисунках 13.6 и 13.7 суть ζ−1(вещественная и мнимая оси) — множество всех точек, которые дзета-функция отправляет в вещественную и мнимую оси. Мы используем запись «ζ(критическая прямая)», чтобы указать на «все значения дзета-функции при аргументах, лежащих на критической прямой». Наоборот, «ζ−1(вещественная и мнимая оси)» означает «все аргументы, для которых значения дзета-функции лежат на вещественной или мнимой осях». Заметим, что выражение ζ−1 используется здесь в специальном смысле теории функций и указывает на обратную функцию. Не следует путать его с a−1 из 8-го правила действий со степенями, где имеется в виду 1/a, арифметическое обратное числа a. Это другое использование — еще один пример перегрузки математических символов, как и с буквой π, которая обозначает и число 3,14159…, и функцию числа простых чисел.
Вообще говоря, картинки типа «отсюда» на плоскости аргумента — предпочтительное средство для понимания того, что такое функция во всем охвате ее свойств (например, где расположены ее нули). Картинки «сюда» на плоскости значений полезнее всего для изучения конкретных аспектов или любопытных особенностей функции.[116]
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.