» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Рисунок 13.6. Плоскость аргумента. Показаны точки, которые дзета-функция отправляет на вещественную или мнимую оси.

Попытка представить себе, что же дзета-функция делает с комплексной плоскостью — в том же духе, как на рисунке 13.3, где показано, что делает с ней функция возведения в квадрат — это упражнение, требующее довольно серьезного умственного напряжения. Если функция возведения в квадрат заворачивает комплексную плоскость саму над собой в двулистную поверхность, изображенную на рисунке 13.3, то дзета-функция делает подобную же вещь бесконечное число раз, что дает бесконечнолистную поверхность. Не расстраивайтесь, если не получается такое себе представить. Чтобы начать интуитивно воспринимать подобные функции, требуется практика в течение нескольких лет. Как я уже говорил, наш подход будет попроще.

Муравей Арг разметил комплексную плоскость так, что получились узоры, показанные на рисунке 13.6. Теперь отправим его путешествовать вдоль одной из этих кривых. Пусть он выходит из точки −2. Поскольку это нуль дзета-функции — один из тривиальных нулей, — окошко «значение функции» показывает 0. А муравей собирается ползти на запад вдоль вещественной оси. Значения функции начинают отодвигаться от нуля.

Вскоре после прохождения точки −2,717262829 при движении на запад окошко «значение функции» покажет число 0,009159890…. Затем число в этом окошке начнет снова уменьшаться до нуля. Поскольку вы читали главу 9, то вполне можете догадаться, что должно произойти. Значение функции будет убывать и убывать до нуля, который и будет достигнут при аргументе −4.

Это оказалось не слишком интересным. Начнем снова. Из точки −2, где показание «значение функции» равно 0, муравей Арг отправится на запад в точку, где значение функции было наибольшим. Но вместо того, чтобы продолжать путь на запад до −4, он резко поворачивает направо и берет курс на север вдоль верхней ветви напоминающей параболу кривой. Теперь значение функции будет все возрастать и возрастать — сначала оно достигнет значения 0,01, затем 0,1, потом (вскоре после пересечения с мнимой осью) достигнет 0,5. И когда муравей устремится на восток по верхней ветви «параболы», значение продолжит расти. Когда муравей выйдет за пределы страницы, направляясь при этом уже почти точно на восток, показание в окошке будет составлять 0,9990286. Оно все еще продолжает возрастать, но страшно медленно, и муравью придется прошагать всю дорогу до бесконечности, пока в окошке не появится 1.

Оказавшись на бесконечности, муравей Арг может захотеть развернуться и пойти обратно. Но чтобы ему не возвращаться той же дорогой, отправим его домой вдоль положительной части вещественной оси. (Не ломайте себе голову на этот счет слишком сильно. Для наших целей на самом деле имеется всего одна «точка на бесконечности», так что, раз оказавшись там, можно отправиться назад в мир настоящих конечных чисел вдоль вообще любого направления). Показания в окошке «значение функции» теперь возрастают: там будет высвечено 1,0009945751… в момент возвращения на рисунок, 1,644934066848… в момент, когда муравей Арг проходит 2 (помните базельскую задачу?), а потом при подходе к 1 показания резко взлетают вверх.

Когда муравей Арг наступает на число 1, из приборчика, который он держит в руке, раздается звонок, а в окошке «значение функции» загорается большой ярко-красный мигающий знак бесконечности ∞. Если муравей Арг посмотрит на это окошко повнимательнее, он обнаружит занятную вещь. Справа от знака бесконечности очень быстро вспыхивает и гаснет маленькая буква i. Одновременно с этим слева от бесконечности загорается и гаснет знак минус, причем тоже очень быстро, но рассогласованно с пульсациями буквы i. Дело выглядит так, будто бы окошко пытается одновременно показать четыре различных значения: ∞, −∞, ∞i и −∞i. Занятно!

Причина кроется в том, что у муравья Арга теперь три возможных варианта выбора (помимо возможности отправиться обратно той же дорогой, которой он пришел). Если он просто пойдет вперед, направляясь на запад вдоль вещественной оси, до тех пор пока не достигнет нуля при аргументе −2, он увидит, что значения функции становятся большими отрицательными числами типа минус одного триллиона, затем быстро доходят до отрицательных чисел умеренной величины (−1000, −100) и в конце концов достигают −1, затем −0,5, когда он наступит на точку нуль (поскольку ζ(0) = −0,5), и окончательно возвращаются к нулю при аргументе −2.

Если же из точки 1 он резко повернет направо и пойдет на север, пересекая верхнюю половину кривой овальной формы вблизи нулевой точки, то в окошке будут показаны значения функции, поднимающиеся вверх по отрицательной мнимой оси, от таких чисел, как −1000 000i, далее через числа −1000i и до −10i, −5i, −2i и затем −i. Незадолго до пересечения с мнимой осью в окошке высветится −0,5i. Далее, по мере приближения к нулю дзета-функции в точке −2, значения функции, разумеется, возрастут до нуля.

Чтобы помочь вам справиться со всем этим непосильным грузом, а также чтобы найти прочную привязку к миру функций (которые мы ввели с помощью таблиц в главе 3), в таблице 13.4 проиллюстрирована только что описанная прогулка против часовой стрелки по верхушке овальной кривой. Аргументами в этой таблице выбраны числа со следующими фазами (в градусах, а не радианах): 0, 30, 60, 90, 120, 150 и 180. Все числа в таблице 13.4 округлены до четырех знаков после запятой.

z ζ(z) 1 −∞i 0,8505 + 0,4910i −1,8273i 0,4799 + 0,8312i −0,7998i 0,9935i −0,4187i −0,5737 + 0,9937i −0,2025i −1,3206 + 0,7625i −0,0629i −2 0

Таблица 13.4. Муравей Арг проходит по верхушке овала на рисунке 13.6.

Если бы муравей повернул из точки 1 налево, то значения функции вернулись бы к нулю через положительную мнимую ось, проходя через числа 1,8273i, 0,7998i и т.д.


VII.

Муравей Арг может начать свою прогулку из любого другого нуля дзета-функции. Все они показаны на рисунке 13.6 в виде маленьких кружочков. Чтобы нашему приятелю было проще разобраться, куда же он идет, там показаны значения, которые высвечиваются в окошке «значение функции» в тот момент, когда он уходит с рисунка вдоль любой из выбранных линий. (Для экономии места при записи этих значений m обозначает «миллион». Разумеется, i, как всегда, обозначает просто i.) Обратим внимание на явления, которые происходят по мере движения вверх по левому краю рисунка, т.е. при движении по аргументам, вещественная часть которых равна −10. Первая линия, уходящая с рисунка с этого края, — это та, которая отображается в отрицательную вещественную ось. Следующая отображается в положительную мнимую ось; следующая после нее — в положительную вещественную ось; следующая — в отрицательную мнимую ось… и т.д.; картина повторяется.

Наоборот, все линии, уходящие с рисунка по правому краю, отображаются в положительную вещественную ось. Как видно из рисунка, справа от критической полосы это довольно скучная функция. Вся обширная восточная область отображается в малюсенькую область вокруг точки 1. Здесь намного «меньше жизни», чем слева в западном регионе; но и этот западный регион не так интересен, как критическая полоса. Все интересное происходите дзета-функцией именно в критической полосе. (По поводу другой иллюстрации этой общей истины см. рассказ о гипотезе Линделёфа в приложении.)

Рисунок 13.6 фактически выражает суть данной книги. Он позволяет видеть дзета-функцию Римана настолько хорошо, насколько вообще можно видеть функцию комплексной переменной. Я призываю читателя провести какое-то время за молчаливым созерцанием этого рисунка и ради упражнения пройти несколькими муравьиными дорожками. Функции из высшей математики это чудесные создания. Они не выдают своих секретов просто так.

Некоторые — такие как эта — могут обеспечить вас занятием на всю жизнь. Лично я никоим образом не могу отнести себя к специалистам по дзета-функции. У меня нет исчерпывающего собрания литературы по дзета-функции, и при сборе материала для данной книги я опирался главным образом на университетские библиотеки и личные контакты. Но, даже не прилагая специальных усилий, я оказался обладателем собственных экземпляров книг «Теория дзета-функции Римана» Э.Ч. Титчмарша (412 страниц), «Введение в теорию дзета-функции Римана» С. Дж. Паттерсона (156 страниц) и незаменимой «Дзета-функции Римана» Хэролда Эдвардса (316 страниц, причем она у меня в трех экземплярах — это долгая история), а также толстенной папки с копиями статей из различных журналов и периодических изданий. Наверняка есть еще масса других увесистых книг, помогающих проникнуть в тайны этой функции, и, кроме того, тысячи статей. Это серьезная математика.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.