» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Рисунок 13.1. Функция x2.

Однако это не годится для функций комплексной переменной. Аргументам требуется двумерная плоскость, чтобы на ней расположиться, а значениям функции нужна еще одна двумерная плоскость. Так что для графика требуются четыре пространственных измерения: два для аргументов и два для значений функции. (В четырехмерном пространстве, хотите верьте, хотите нет, две двумерные плоскости могут пересекаться в единственной точке. Это можно сравнить с тем фактом — совершенно недоступным для понимания обитателей двумерной вселенной, — что в трехмерии две непараллельные прямые не обязаны пересекаться.)

Это разочаровывает; но в качестве компенсации имеется кое-что, что можно делать для создания картинок, представляющих функции комплексной переменной. Вспомним то главное, что надо знать про функцию: она превращает одно число (аргумент) в другое (значение). Так вот, число-аргумент представляет собой точку где-то на комплексной плоскости, а значение функции представляет собой некоторую другую точку. Таким образом, функция комплексной переменной отправляет все точки из своей области определения в другие точки. Можно выбрать какие-то точки и посмотреть, куда они отправляются.

На рисунке 13.2, например, показаны числа, образующие стороны некоторого квадрата на комплексной плоскости. Углы отмены буквами a, b, c и d. Это в действительности комплексные числа −0,2 + 1,2i, 0,8 + 1,2i, 0,8 + 2,2i и −0,2 + 2,2i.

Рисунок 13.2. Функция z2, примененная к квадрату.

Что с ними произойдет при применении функции возведения в квадрат? Если умножить число −0,2 + 1,2i само на себя, то получится −1,4 − 0,48i; значит, таково значение функции для точки a. Возведение в квадрат чисел, соответствующих точкам b, c и d, дает значения для всех остальных углов; эти значения отмечены как A, B, C и D. Если повторить это для всех точек вдоль сторон квадрата, а также для точек, образующих сетку внутри него, получится искаженный квадрат, также изображенный на рисунке 13.2.


V.

При работе с функциями комплексной переменной полезно думать о комплексной плоскости как о бесконечно растяжимом резиновом листе, при этом спрашивая себя, что же функция делает с этим листом. По числам, выбранным на рисунке 13.2, можно видеть, что функция возведения в квадрат растягивает лист, закручивая его против часовой стрелки вокруг нулевой точки и одновременно вытягивая наружу. Число 2i, например, которое само по себе живет на положительной (северной) части мнимой оси, при возведении в квадрат отправляется в число −4, расположенное на отрицательной (западной) части вещественной оси, причем вдвое дальше от нулевой точки. В свою очередь −4 при возведении в квадрат растягивается до 16 (еще дальше от нуля) и попадает на положительную (восточную) часть вещественной оси. По правилу знаков число −2i, находящееся на отрицательной (южной) части мнимой оси, «докручивается» до числа −4. На самом деле, согласно правилу знаков, всякое[113] значение функции возведения в квадрат встречается дважды, возникая при двух аргументах: не будем забывать, что −4 есть квадрат не только числа 2i, но и числа −2i.

Бернхард Риман, обладавший, судя по всему, чрезвычайно развитым зрительным воображением, представлял себе это таким образом. Возьмем всю комплексную плоскость. Проведем разрез вдоль отрицательной (западной) части вещественной оси, остановившись в точке нуль. Теперь ухватимся за верхний край этого разреза и потянем его против часовой стрелки, поворачивая вокруг точки нуль, как будто туда встроен шарнир. Повернем этот край на 360 градусов. Теперь наш край разреза находится над растянутым листом, а другой край расположен прямо под ним. Проведем наш край через лист (для этого следует представить себе, что комплексная плоскость не только бесконечно растяжима, но и сделана из некоторого рода туманной субстанции, которая может проходить сама сквозь себя) и склеим оба края исходного разреза. Картинка у нас в голове теперь выглядит примерно так, как показано на рисунке 13.3. Вот что функция возведения в квадрат делает с комплексной плоскостью.

Рисунок 13.3. Риманова поверхность, отвечающая функции z2.

Это вовсе не досужие изыски. На основе такого мысленного упражнения Риман развил целую теорию, впоследствии названную теорией римановых поверхностей. Она содержит ряд мощных результатов и дает глубокое понимание того, как ведут себя функции комплексной переменной. Она также соединяет теорию функций с алгеброй и топологией — двумя ключевыми областями математики XX столетия. А главное — она представляет собой типичный продукт дерзкого, бесстрашного и самобытного воображения, которым обладал Риман, — продукт одного из величайших умов, вообще когда-либо существовавших.


VI.

Я воспользуюсь гораздо более простым подходом для иллюстрации функций комплексной переменной. Позвольте представить моего друга, муравья по имени Арг; он перед вами на рисунке 13.4.

Рисунок 13.4. Муравей Арг.

Муравья Арга невероятно трудно разглядеть, потому что он имеет бесконечно малый размер. Но если бы мы могли его видеть, то обнаружили бы, что он выглядит совсем как обычный муравей — если уж быть точным, то как рабочий Camponotus japonicus — с соответствующим числом лапок, усиков и прочего. В одной из своих передних лапок, которую можно для удобства называть «рукой», муравей Арг держит приборчик вроде пейджера, или мобильного телефона, или одного из тех устройств для глобального позиционирования, что всегда сообщают вам, где именно вы находитесь. На этом приборчике (рис. 13.5) имеются три окошка. В первом окошке, под которым написано «функция», показано название некоторой функции: z2, ln z и т.д. — в общем, на приборчике можно выставить любую функцию. Во втором окошке, под которым написано «аргумент», показана точка — т.е. комплексное число, — на которой муравей Арг стоит в данный момент. И в третьем окошке, с подписью «значение функции», показано значение выбранной функции при данном аргументе. Таким образом, муравей Арг всегда точно знает, где находится; а для любой заданной функции он знает, кроме того, куда данная функция отправляет точку, на которой он стоит.

Рисунок 13.5. Муравьиный приборчик.

Моя задача состоит в том, чтобы показать вам дзета-функцию, И поэтому я собираюсь отправить муравья Арга свободно бродить по комплексной плоскости.[114] Когда в окошке «значение функции» показан нуль, это значит, что Арг стоит на точке («аргументе»), которая является нулем дзета-функции. Я договорюсь с ним, чтобы он отмечал эти точки волшебным маркером, который он носит в маленьком кармашке на брюшке. Тогда мы сможем узнать, где располагаются нули дзета-функции.

На самом деле я попрошу муравья Арга потрудиться еще немного. Пусть он отмечает все аргументы, которые дают чисто вещественное или чисто мнимое значение функции. Он отметит аргумент, при котором значение функции равно 2, или −2, или 2i, или −2i; а точку, в которой значение функции равно 3,7i, он отмечать не будет. Другими словами, он отметит все точки, которые дзета-функция отправляет на вещественную ось или на мнимую ось таким способом мы получим нечто вроде картинки, представляющей дзета-функцию.

На рисунке 13.6 представлен результат этой одиссеи. Прямыми линиями на ней показаны вещественная и мнимая оси, а также критическая полоса. Все кривые линии составлены из точек, которые дзета-функция отправляет на вещественную или мнимую оси. Разумеется, поскольку вещественная и мнимая оси пересекаются в нуле, нулями дзета-функции будут как раз точки, где эти линии пересекаются. В точках, где каждая из этих кривых уходит с рисунка, подписано значение функции, соответствующее этой точке.

Рисунок 13.6. Плоскость аргумента. Показаны точки, которые дзета-функция отправляет на вещественную или мнимую оси.

Попытка представить себе, что же дзета-функция делает с комплексной плоскостью — в том же духе, как на рисунке 13.3, где показано, что делает с ней функция возведения в квадрат — это упражнение, требующее довольно серьезного умственного напряжения. Если функция возведения в квадрат заворачивает комплексную плоскость саму над собой в двулистную поверхность, изображенную на рисунке 13.3, то дзета-функция делает подобную же вещь бесконечное число раз, что дает бесконечнолистную поверхность. Не расстраивайтесь, если не получается такое себе представить. Чтобы начать интуитивно воспринимать подобные функции, требуется практика в течение нескольких лет. Как я уже говорил, наш подход будет попроще.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.