Морис Клайн - Математика. Утрата определенности.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Математика. Утрата определенности."
Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
По другому случаю Эрмит сказал: «В математике мы больше слуги, чем господа».
Многие из математиков XX в., несмотря на споры по поводу оснований, заняли ту же позицию. Создатель теории множеств и трансфинитных чисел Георг Кантор считал, что математики не изобретают понятия и теоремы, а открывают их. Математические понятия и теоремы существуют независимо от человеческого мышления. Себя самого Кантор считал репортером и секретарем, записывающим эти понятия и теоремы. Годфри Гарольд Харди, скептически относившийся к предлагаемым человеком доказательствам, утверждал в 1929 г.:
Мне кажется, что ни одна философия не может вызвать сочувствие у математика, если она так или иначе не признает незыблемости и безусловной годности математической истины. Математические теоремы истинны или ложны, и их истинность или ложность абсолютно не зависит от того, известны ли нам эти теоремы. В некотором смысле математическая истина является частью объективной реальности.
Аналогичные взгляды Харди выразил и в своей книге «Апология математика» [39]*:
Свою позицию я сформулирую догматически во избежание малейшей неясности. Я считаю, что математическая реальность лежит вне нас, что наша функция заключается в открытии и наблюдении ее и что теоремы, которые мы доказываем и высокопарно называем своими «творениями», в действительности являются не более чем записями наших наблюдений.
Выдающийся французский математик XX в. Жак Адамар (1865-1963) утверждал в работе «Исследование психологии процесса изобретения в области математики», что, «хотя истина еще не известна нам, она предсуществует и неизбежно подсказывает нам путь, которым мы должны следовать» [70].
Гёдель также разделял мнение о существовании трансцендентального мира математики. Что касается теории множеств, то он считал вполне допустимым рассматривать все множества как реальные объекты:
Мне кажется, что допущение о существовании таких объектов столь же законно, как и допущение о существовании физических объектов, и что имеется не меньше оснований верить в их существование. Они необходимы для получения удовлетворительной теории математики в том же смысле, в каком физические тела необходимы для удовлетворительной теории наших чувственных восприятий, и в обоих случаях невозможно интерпретировать утверждения, которые мы хотим высказать об этих сущностях, как утверждения о «данных», т.е., в последнем случае, о реальных чувственных восприятиях.
Некоторые из приведенных выше высказываний принадлежат ученым двадцатого столетия, которых не очень беспокоили основания математики. Еще более удивительно, что и кое-кто из лидеров различных школ в основаниях математики, например Гильберт, Алонзо Черч и члены группы Бурбаки, утверждали, что математические понятия и свойства существуют в некотором объективном смысле и могут быть постигнуты человеческим разумом. Таким образом, математическую истину открывают, а не изобретают, и в результате открытия возникает не математика, а человеческое знание математики.
Людей, разделяющих подобные взгляды, часто называют платонистами. Хотя Платон и верил в то, что математика существует в некотором идеальном мире независимо от людей, его учение содержит много несовместимого с современными воззрениями; поэтому здесь апелляция к платонизму не столько помогает, сколько вводит в заблуждение.
Все утверждения о существовании объективного, единого ядра математики ничего не говорят о том, где же находится математика. Они указывают лишь, что математика существует в некотором «потустороннем» мире, своего рода воздушном замке, а человек лишь открывает ее. Аксиомы и теоремы отнюдь не только творения человеческого разума — их скорее можно сравнить с сокровищами, скрытыми в недрах, которые можно извлечь на поверхность, если запастись терпением и копать все глубже и глубже. Но существование аксиом и теорем не зависит от человека, как не зависит от него, например, существование планет.
Является ли математика коллекцией алмазов, спрятанных в недрах Вселенной и постепенно извлекаемых на поверхность, или коллекцией искусственных драгоценных камней, созданных человеком и сверкающих так ярко, что они ослепили тех математиков, кто уже отчасти был ослеплен гордостью за свои творения?
Если существует мир сверхчувственных и трансцендентально абсолютных объектов и если наши логические и математические утверждения представляют собой всего лишь записи наблюдений этих объектов, то не существуют ли противоречия и ложные утверждения в том же смысле, в каком существуют истинные утверждения? Сорные семена ложности и противоречивости могут давать столь же пышные всходы, как и семена истинные и прекрасные. Дьявол сеет свои семена и собирает жатву наряду с богом истины. Разумеется, платонисты могли бы возразить, что ложные утверждения и противоречия возникают только из-за неадекватности усилий, прилагаемых человеком для достижения истины.
Иной точки зрения (согласно которой математика — это только продукт человеческого мышления) придерживаются интуиционисты. Эта точка зрения восходит к Аристотелю. Однако если одни интуиционисты считают, что истина гарантируется разумом, то другие утверждают, что математика представляет собой не незыблемый свод непреложных знаний, а творение человеческого разума, которому свойственно ошибаться. Классическое высказывание на эту тему, появившееся задолго до современных споров, мы находим в «Мыслях» Паскаля: «Истина — слишком тонкая материя, а наши инструменты слишком тупы, чтобы ими можно было прикоснуться к истине, не повредив ее. Достигнув истины, они сминают ее и отклоняются в сторону, скорее ложную, нежели истинную».{172} По утверждению главы интуиционистов Аренда Рейтинга, в наше время никто не может говорить об истинной математике, т.е. о математике как едином своде правильных знаний.
Герман Ганкель, Рихард Дедекинд и Карл Вейерштрасс считали математику творением человека. В письме Генриху Веберу Дедекинд утверждал: «По-моему, то, что мы понимаем под числом, само по себе есть не класс, а нечто новое…. созданное нашим разумом. Мы божественная раса и обладаем… способностью творить». Ту же мысль Вейерштрасс выразил такими словами: «Истинный математик всегда поэт». Ученик Рассела философ Людвиг Виттгенштейн (1889-1951) считал, что математик — изобретатель, а не открыватель. Все эти и многие другие мыслители рассматривали математику как нечто далеко выходящее за пределы эмпирических данных или рациональных дедуктивных умозаключений. В пользу их мнения свидетельствует хотя бы тот факт, что такие элементарные понятия, как иррациональные и отрицательные числа, не являются ни дедукциями из эмпирических данных, ни объектами, заведомо существующими в некотором внешнем мире.
Герман Вейль с большой иронией относился к вечным истинам. В книге «Философия математики и естественных наук»[93]* он писал:
Гёделю с его истовой верой в трансцендентальную логику хочется думать, что наша логическая оптика лишь немного не в фокусе, и надеяться, что после небольших коррекций мы будем видеть четко, и тогда всякий согласится, что мы видим верно. Но того, кто не разделяет этой веры, смущает высокая степень произвола в системе Z [Цермело] или даже в системе Гильберта… Никакой Гильберт не сможет убедить нас в непротиворечивости на вечные времена. Мы должны быть довольны, если какая-нибудь простая аксиоматическая система математики пока выдерживает проверку наших сложных математических экспериментов. Если на более поздней стадии появятся расхождения, то мы еще успеем изменить основания.
Лауреат Нобелевской премии американский физик и философ Перси Уильямс Бриджмен в своей книге «Логика современной физики» (1946) решительно отвергает существование объективного мира математики: «Это общеизвестная истина, очевидная с первого взгляда, что математика — изобретение человека». Теоретическая наука — игра математического воображения. Все, кто считал математику творением человека, утверждали также, что математика испытала на себе сильное влияние тех культур, в рамках которых она развивалась. Математические «истины» в такой же мере зависимы от людей, как восприятие цвета или английский язык. Лишь относительно широкое принятие математических доктрин — по сравнению с политическими, экономическими и религиозными — создает иллюзию, будто математика представляет собой свод истин, объективно существующих вне человека. Математика может существовать независимо от любого человека, но не от культуры, которая его окружает. Перефразируя Германа Вейля, можно сказать, что математика не отдельное техническое достижение, а неотъемлемая часть человеческого существования во всей его общности — и в этом она находит свое обоснование.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Математика. Утрата определенности."
Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Морис Клайн - Математика. Утрата определенности."
Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.