» » » » Морис Клайн - Математика. Утрата определенности.


Авторские права

Морис Клайн - Математика. Утрата определенности.

Здесь можно скачать бесплатно "Морис Клайн - Математика. Утрата определенности." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Морис Клайн - Математика. Утрата определенности.
Рейтинг:
Название:
Математика. Утрата определенности.
Автор:
Издательство:
Мир
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Математика. Утрата определенности."

Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.



Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.






На долю человеческого разума в одном из видов его познания выпала странная судьба: его осаждают вопросы, от которых он не может уклониться, так как они навязаны ему собственной природой; но в то же время он не может ответить на них, так как они превосходят возможности человеческого разума.

([18], т. 3, с. 73.)

Близкую мысль высказал знаменитый испанский писатель и философ Мигель де Унамуно (1864-1936) в «Трагическом смысле жизни»: «Высшего триумфа разум достигает, когда ему удается заронить сомнение в собственной годности».

Более пессимистических взглядов на роль логики придерживался Герман Вейль. В 1940 г. он утверждал: «Несмотря на наше критическое озарение (а может быть, благодаря ему), мы сегодня менее, чем когда-либо раньше, уверены в основаниях, на которых зиждется математика». В 1944 г. Вейль развил свою мысль подробнее:

Вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, остается открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный окончательный ответ будет когда-нибудь получен и признан всеми математиками. «Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддается рационализации и не может быть объективным.

Как сказал Вейль, математика — это вид умственной деятельности, а не свод точных знаний. Математику лучше всего рассматривать в исторической перспективе. Рациональные конструкции и реконструкции оснований при таком подходе предстают перед нами лишь как попытки исказить историческую правду.

Наиболее крайние взгляды выразил в своей книге «Логика научного исследования» [120] Карл Поппер. Математическое рассуждение никогда не бывает верным, оно может быть только ошибочным. Было бы опрометчивым поручиться и за истинность математических теорем. Существующей математической теорией можно продолжать пользоваться за неимением лучшей, подобно тому как пользовались ньютоновской механикой в течение двух столетий до появления специальной теории относительности или как пользовались евклидовой геометрией до того, как была создана риманова геометрия. Уверенность в правильности математической теории недостижима.

Как свидетельствует история, не существует раз и навсегда заданного, обоснованного единого свода математических знаний. Кроме того, если история позволяет делать какие-то прогнозы, то можно сказать, что любые дополнения к существующей математике потребуют новых оснований. В этом отношении математика схожа с любой из физических наук. Физические теории приходится модернизировать и перестраивать всякий раз, когда новые наблюдения или новые экспериментальные данные вступают в противоречие с ранее установленными теориями и вынуждают формулировать новые. Математическую истину невозможно описать безотносительно ко времени. Все попытки построить математику на незыблемом основании заканчивались неудачей. Непрекращающиеся попытки — от Евклида через Вейерштрасса до современных школ в основаниях — подвести под математику прочный фундамент не дают ни малейшего повода надеяться на эволюционный прогресс, сулящий конечный успех.

Изложенные выше взгляды на роль интуиции и доказательства отражают точку зрения на современную математику, но не учитывают всех мнений о будущем. Взгляд на логику был подтвержден группой французских математиков, выступающих под коллективным псевдонимом Никола Бурбаки. В предисловии к первому тому «Элементов математики» Бурбаки пишет:

Как показывает анализ исторического развития математики, было бы неверно утверждать, что математика свободна от противоречий; непротиворечивость предстает как цель, к которой следует стремиться, как некое данное богом качество, ниспосланное нам раз и навсегда. С древнейших времен все критические пересмотры принципов математики в целом или любой из ее областей почти неизменно сменялись периодами неопределенности, когда появлялись противоречия и их приходилось решать… Вот уже двадцать пять веков математики имеют обыкновение исправлять свои ошибки и видеть в этом обогащение, а не обеднение своей науки; это дает им право смотреть в будущее спокойно.

([2], с. 30.)

Обращение к истории, возможно, в какой-то степени утешает, но та же история учит, что новые кризисы непременно возникнут. Однако столь мрачная перспектива не охлаждает оптимизма Бурбаки.

Один из ведущих французских математиков, бурбакист, Жан Дьедонне, выразил уверенность в том, что проблемы логики, коль скоро они возникнут, непременно будут разрешены:

Если когда-нибудь будет доказано, что математика противоречива, то скорее всего станет известно, какому правилу следует приписать полученный результат. Отбросив это правило или надлежащим образом видоизменив его, мы избавимся от противоречия. Иначе говоря, математика изменит направление своего развития, но не перестанет быть наукой. Сказанное не просто умозаключение: нечто подобное произошло после открытия иррациональных чисел. Мы далеки от мысли оплакивать это открытие, потому что оно вскрыло противоречие в пифагорейской математике, а, напротив, сегодня мы считаем его одной из великих побед человеческого духа.

Дьедонне мог бы привести еще один пример: лейбницевский подход к дифференциальному и интегральному исчислению (гл. VII). После всех критических замечаний, выпавших на долю понятия бесконечно малой величины в XVIII в., новая формулировка (нестандартный анализ, гл. XII) придала ему строгий смысл, согласующийся с логистическим, формалистским и теоретико-множественным вариантами оснований математики.

Помимо тех, кто, подробно бурбакистам, преисполнен оптимизма и считает устранимым любое противоречие, могущее возникнуть в основаниях математики, среди математиков есть и такие, кто верит в существование единого непротиворечивого, вечного ядра математики, которое может быть применимым или неприменимым к физическому миру. По мнению этих математиков, не все идеи, образующие вечное ядро математики, могут быть известны человеку, тем не менее эти идеи существуют, — так и несогласованность и неопределенность доказательства обусловлены только ограниченностью человеческого разума. Имеющиеся ныне разногласия между математиками не более чем временное препятствие, которое постепенно будет преодолено.

Некоторые из мыслителей считают, что математика настолько глубоко внедрилась в человеческий разум (в этом отношении их можно считать кантианцами), что вопрос о ее непротиворечивости отпадает сам собой. Так, Уильям Роуан Гамильтон, хотя он и ввел объекты (кватернионы), которые породили сомнение в соответствии арифметики физическому миру, в 1836 г. высказался вполне в духе Декарта:

Такие чисто математические науки, как алгебра и геометрия, являются науками чистого разума, не подкрепляемыми опытом и не получающими от него помощи, изолированными или могущими быть изолированными от всех внешних и случайных явлений… Вместе с тем это идеи, рожденные внутри нас, обладание которыми в сколько-нибудь ощутимой степени есть следствие нашей врожденной способности, проявление человеческого начала.

В докладе, прочитанном в 1883 г. на заседании Британской ассоциации поощрения науки, один из крупнейших алгебраистов XIX в. Артур Кэли заявил: «Мы обладаем априорными знаниями, не зависящими не только от того или иного опыта, но и от всякого опыта вообще… Эти знания составляют вклад нашего разума в интерпретацию опыта».

В то время как одни (например, Гамильтон и Кэли) представляли математику как «внедрившуюся» в человеческий разум, другие считали, что она существует в мире, лежащем вне человека. Трудно понять, как могли просуществовать до начала XX в. представления о математике как о едином реальном мире математических идей. Корни таких представлений восходят к Платону (гл. I). Эти представления неоднократно возрождали, в особенности Лейбниц, проводивший различия между истинами разума и истинами факта (последние остаются истинными во всех возможных мирах). Даже Гаусс, первым по достоинству оценивший неевклидову геометрию, был убежден в абсолютной истинности арифметики (числа) и анализа (гл. IV).

Веру в существование объективного реального мира математики разделял один из искуснейших аналитиков XIX в. Шарль Эрмит (1822-1901). В письме математику Томасу Яну Стильтьесу Эрмит утверждал:

Я убежден в том, что числа и функции анализа не являются произвольным продуктом нашего духа. Я верю, что они лежат вне нас с той же необходимостью, как предметы объективной реальности, а мы обнаруживаем или открываем и исследуем их так же, как это делают физики, химики и зоологи.{171}


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Математика. Утрата определенности."

Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Морис Клайн

Морис Клайн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Морис Клайн - Математика. Утрата определенности."

Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.