» » » » Морис Клайн - Математика. Утрата определенности.


Авторские права

Морис Клайн - Математика. Утрата определенности.

Здесь можно скачать бесплатно "Морис Клайн - Математика. Утрата определенности." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Морис Клайн - Математика. Утрата определенности.
Рейтинг:
Название:
Математика. Утрата определенности.
Автор:
Издательство:
Мир
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Математика. Утрата определенности."

Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.



Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.






Надежда на применимость математики к естественным наукам (можно сказать, к эмпирическим данным) привела к результату, о котором стоит рассказать. Евклидов идеал предполагал, что, начав с аксиом, истинность которых не вызывает сомнений, мы затем станем выводить из них теоремы по раз и навсегда установленным логическим правилам, исключающим любую ошибку в рассуждениях. Полагаясь на применимость к физике, мы обращаем вспять всю концепцию математики. Если полученные на завершающем этапе заключения истинны в силу их применимости, то аксиомы по крайней мере разумны, хотя, возможно, и не единственны (могут существовать другие аксиомы, приводящие к тем же заключениям). Истинность, понимаемая как полезность (или применимость) математики, против течения не поплывет.

Лидерам различных школ в основаниях математики случалось иногда надолго отходить от собственных убеждений. Так, один из основателей интуиционизма Леопольд Кронекер получил превосходные результаты в области алгебры, никак не согласующиеся с его собственными стандартами строгости. Как заметил Пуанкаре, Кронекер предал забвению собственную философию. Брауэр, провозгласив философию интуиционизма в своей диссертации 1907 г., следующее десятилетие посвятил плодотворным исследованиям в области топологии, в которых полностью игнорировал интуиционистские доктрины.

Итогом всей этой бурной и разнообразной деятельности стал вывод о том, что правильная математика должна определяться не основаниями (каковыми бы те ни были), безошибочность которых можно и оспаривать, — о «правильности» математики следует судить по ее применимости к реальному миру. Математика — такая же эмпирическая наука, как и ньютоновская механика. Математика правильна, лишь покуда она действует, а если что-то не срабатывает, то в нее необходимо вводить надлежащие поправки. Математика не свод априорных знаний, каковой ее считали в течение более чем двух тысячелетий; она не абсолютна и не неизменна.

Но коль скоро математику надлежит рассматривать как одну из естественных наук, важно досконально представить себе, как устроены и как работают естественные науки. В любой такой науке производят наблюдения над природными явлениями или ставят специально организованные эксперименты, а затем на основании полученных результатов строят теории — движения, света, звука, теплоты, электричества, химического строения вещества и т.д. Все эти теории созданы человеком, и правильность их оценивается по соответствию сделанных на их основе предсказаний с последующими наблюдениями и экспериментами. Если предсказания подтверждаются (во всяком случае, в пределах ошибки эксперимента), то теория считается верной. Тем не менее впоследствии такая теория может быть опровергнута; поэтому ее всегда надлежит рассматривать как «полуэвристическую» теорию (где, впрочем, доли «теоретичности» и «эвристичности» могут варьироваться в весьма широких пределах), а не как абсолютную истину, входящую неотъемлемой составной частью в структуру физического мира. Мы привыкли к подобному взгляду на естественнонаучные теории, поскольку нам неоднократно приходилось быть свидетелями того, как одни естественнонаучные теории (корпускулярная теория света, флогистон, эфир, в какой-то степени даже ньютонова механика и волновая теория света Гюйгенса) опровергались и уступали место новым теориям.{175} Единственная причина, по которой подобный взгляд не распространялся на математику, состояла, как отметил Милль, в том, что элементарная арифметика и евклидова геометрия сохраняли эффективность на протяжении многих веков и люди ошибочно приняли эту эффективность за абсолютную истинность.{176} Однако не следует упускать из виду, что любая область математики предлагает только такую теорию, которая дееспособна. Покуда она эффективна, мы можем следовать ей, но впоследствии нам, возможно, понадобится более усовершенствованный вариант теории. Математика выполняет миссию посредника между человеком и природой, между внутренним миром человека и тем, что его окружает. Математика — это отличающийся необычайной смелостью линий грандиозный мост между нами и внешним миром. Горько сознавать, что концы его не закреплены ни в реальности, ни в умах людей.

Разум обладает способностью прозревать истину только в том, что строит по собственному плану и, хотя начать построение он может, руководствуясь своими идеями, на более позднем этапе ему необходимо с помощью эксперимента выведать у природы, насколько удачны предложенные им идеи. Вот тогда и наступает время для теории и для проверки ее соответствия реальному миру. В основном математика отличается от естественных наук одной особенностью: в то время как в физике на смену одним теориям приходили другие, радикально новые, в математике значительная часть логики, теории чисел и классического анализа успешно функционировали на протяжении многих веков. Более того, они применимы и поныне. Независимо от того, являются ли названные выше составные части математики абсолютно надежными или нет, они отлично нам служат — у нас нет ни оснований, ни права усомниться в них. Все эти разделы математики можно было бы назвать «квазиэмпирическими», ибо эмпирические их истоки потонули в глубине веков и для нас почти неразличимы.

В подтверждение сказанного приведем пример из истории дифференциального и интегрального исчисления. Несмотря на несмолкавшие споры о логических основах исчисления, как методология оно оказалось вполне успешным. По иронии судьбы именно теория бесконечно малых Лейбница (а не весь аппарат математического анализа) во второй половине нашего столетия неожиданно получила строгое обоснование (так называемый нестандартный анализ; см. гл. XII).

Критерием применимости к внешнему миру можно воспользоваться даже для проверки аксиомы выбора. Сам Цермело в работе 1908 г. утверждал: «Каким образом Пеано приходит к своим основополагающим принципам… если в конечном счете он не может их доказать? Ясно, что он получает их, анализируя способы логического вывода, признанные правильными в ходе исторического развития, и отмечая, что эти принципы интуитивно очевидны и необходимы для науки…» Отстаивая правомерность использования аксиомы выбора, Цермело ссылался на успехи, достигнутые с помощью этой аксиомы. В работе 1908 г. он отметил, сколь полезной оказалась (даже тогда) аксиома выбора в теории трансфинитных чисел, в теории вещественного числа Дедекинда (см. [46] и [47]) и в решении более специальных проблем анализа.

Лидеры различных математических школ и направлений, рекомендуя использовать приложения к естественным наукам как путеводную нить и критерий доброкачественности математики, руководствуются не только желанием выбрать одно из течений в основаниях математики. Все они сознают, что силы математики в решении физических проблем неизмеримо возросли, и считают недопустимым игнорировать услуги, оказываемые математикой человечеству в познании мира, только потому, что сохранились разногласия в основаниях математики. Хотя многие математики на протяжении без малого последних ста лет и перестали заниматься естественнонаучными приложениями, величайшие из математиков XX в. — Пуанкаре, Гильберт, фон Нейман и Вейль — внесли существенный вклад в современную физику.

К сожалению, большинство математиков — в силу указанных ранее (гл. XIII) причин, которые следует считать скорее предосудительными, чем похвальными, — и поныне не работают в области приложений своей науки; вместо этого они продолжают во все возрастающем темпе создавать все новые теоремы чистой математики. Некоторое представление о размахе современных исследований по (чистой и прикладной) математике можно получить по журналу Mathematical Review{177}, печатающему краткие рефераты наиболее значительных новых работ, — ежемесячно в этом журнале публикуется около 2500 рефератов, т.е. около 30 000 рефератов в год.

Можно было бы думать, что тупик, в который зашел нескончаемый спор о том, какую именно математику можно считать «правильной» и какая школа математической мысли является наиболее последовательной, а также множество направлений, по которым математика может далее развиваться (даже оставаясь в рамках одного и того же течения в области оснований), позволит чистым математикам воспользоваться «паузой» и переключиться на решение проблем, связанных с основаниями математики, вместо того чтобы достраивать в разных направлениях здание математической науки, игнорируя шаткость фундамента и рискуя тем, что новые теоремы могут оказаться логически неверными. Но этого не происходит, так что математики пренебрегают как философскими вопросами оснований, так и критерием практической приложимости. Почему же они так охотно работают в областях математики, далеких от приложений?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Математика. Утрата определенности."

Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Морис Клайн

Морис Клайн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Морис Клайн - Математика. Утрата определенности."

Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.