Морис Клайн - Математика. Утрата определенности.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Математика. Утрата определенности."
Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Забвение интересов физики было избрано темой большой лекции [116], с которой в 1972 г. выступил перед математиками известный американский физик Фримен Джон Дайсон. И прежде, и теперь, отметил Дайсон, математикам неоднократно предоставлялась возможность внести свой вклад в решение физических проблем первостепенной важности, но математики неизменно упускали свей шанс. Некоторые из этих проблем, полностью или частично, каким-то образом все же проникли в математику, но математикам не известно ни их происхождение, ни физическая значимость. Математики следуют в произвольном направлении и не пытаются даже осмысливать собственные достижения. По словам Дайсона, брак между математикой и физикой закончился разводом.
В XX в. разрыв между математикой и физикой ускорился. В наше время нередко приходится слышать и читать заявления математиков о том, что их наука не зависит от естественных наук. Математики теперь, не колеблясь, открыто признают, что их интересы сосредоточены на чистой математике, а физика им безразлична. Хотя точная статистика неизвестна, но можно полагать, что основная часть работающих сегодня математиков не сведущи в физике и спокойно пребывают в этом благословенном состоянии. Несмотря на опыт истории и на критику, тенденция к абстракции, к обобщению ради обобщения и к изучению произвольно выбранных проблем сохраняется в математике и поныне. Разумная потребность в изучении целого класса проблем с целью более глубокого понимания частных случаев и в абстракции с целью выявления сущности проблемы стала не более чем предлогом для обобщений ради обобщений и абстракций ради абстракций.
За много веков человек создал такие великие построения, как евклидова геометрия, птолемеева система мира, гелиоцентрическая система мира, механика Ньютона, теория электромагнитного поля, а позднее — теория относительности и квантовая теория. Математика, как известно, является неотъемлемой частью всех этих и многих других важных и мощных теорий, их основой и их сущностью. Математические теории позволили нам многое узнать о природе и охватить в понятных теоретических схемах множество внешне различных явлений. Математические теории дали человечеству возможность обнаружить порядок и план повсюду в природе, где только их можно было найти; они помогли нам частично или полностью овладеть обширными областями знания.
Но большинство математиков предало забвению древние традиции математики и наследие ее прошлого. Наполненные глубоким содержанием сигналы, которые посылает нам природа, достигают лишь закрытых глаз и нечутко прислушивающихся ушей. Математики продолжают жить на проценты от репутации, заработанной их предшественниками, и жаждут при этом шумного одобрения и такой же поддержки, какую математика имела в прошлом. Чистые математики пошли еще дальше — они изгнали прикладных математиков из своего братства в надежде, что им одним достанется вся слава, которую снискали их предшественники. Они выбросили за борт богатейший источник идей и беспечно транжирят накопленное ранее богатство. В погоне за блуждающим огоньком они покинули пределы реального мира. Правда, некоторые чистые математики, памятуя о благородной традиции, стимулировавшей в прошлом математические исследования и приведшей Ньютона и Гаусса к выпавшим на их долю почестям, продолжают твердить о потенциальной ценности своих математических работ для естественных наук. Они утверждают, что создают модели для теоретического естествознания. Но в действительности подобная цель их нисколько не занимает. Более того, поскольку большинство математиков абсолютно не сведущи в естественных науках, они просто не в состоянии создавать такие модели. Они считают, что лучше хранить целомудрие, чем делить брачное ложе с естествознанием. Современная математика в целом обращена внутрь, она питается своими собственными соками. Судя по опыту прошлого, маловероятно, что многие из современных математических исследований внесут хоть какой-нибудь вклад в развитие естественных наук. Возможно, математике суждено еще долго брести в кромешной тьме, отыскивая свой путь на ощупь, ведь современная математика автономна. Развиваясь в направлениях, которые по ее собственным критериям определяются как имеющие отношение к делу и предпочтительные перед другими, современная математика даже гордится своей независимостью от диктуемых внешним миром проблем, мотивировок, побудительных стимулов. В отличие от математики прошлого современная математика не обладает более ни единством, ни целью.
Изоляция большинства современных математиков достойна сожаления по многим причинам. Сфера приложений математики в науке и технике расширяется необычайно быстро. Вплоть до недавнего времени казалось, что близко к осуществлению пророчество Декарта, видевшего в математике высшее достижение человеческого разума, триумф логики над эмпиризмом и предсказавшего проникновение математических методов во все науки. Но именно в тот момент, когда математический подход распространился на многие области знания, математики отошли в сторону. Сто лет назад и ранее математика и физика были тесно связаны между собой. С тех пор между ними произошел разрыв, и ныне брешь между математикой и физикой достигла весьма ощутимых размеров. Современные математики упускают из виду, что ценность их науки определяется прежде всего тем вкладом, который она вносит в познание законов природы и в овладение природой. Большинство современных математиков хотят полностью изолировать свою науку и заниматься лишь исследованиями, лежащими в стороне от насущных проблем естествознания. Между теми, кто считает необходимым при выборе направления своих исследований придерживаться древней благородной традиции, и теми, кто предпочитает плыть по течению и расследовать все, что подсказывает их неуемная фантазия, произошел раскол. Утратив за последние сто лет развития математики — становившейся все более чистой — остроту зрения, математики разучились читать книгу природы и потеряли всякую охоту к подобному чтению. Они обратились к таким областям математики как абстрактная алгебра и топология, к таким абстракциям и обобщениям, как функциональный анализ, к такой далекой от приложений деятельности, как доказательство теорем существования решений дифференциальных уравнений, к аксиоматизации различных наук и к бесплодной игре разума. Лишь немногие современные математики все еще пытаются решать более конкретные проблемы, главным образом в теории дифференциальных уравнений и близких к ней областях.
Означает ли отход большинства математиков от естественных наук, что современное естествознание может лишиться математики? Не совсем. Как заметили некоторые наиболее проницательные математики, новые Ньютоны, Лапласы и Гамильтоны создадут в будущем нужную им математику, подобно тому как их предшественники создали ее в прошлом. Ньютон, Лаплас и Гамильтон были физиками, хотя и снискали всеобщее признание как первоклассные математики. Рихард Курант писал в 1957 г. в некрологе по случаю кончины Франца Реллиха: «Если существующая ныне тенденция сохранится, то не исключена опасность, что развитие «прикладной» математики в будущем станет уделом физиков и инженеров, а профессиональные математики сколько-нибудь высокого ранга не будут иметь к этому никакого отношения». Слово «прикладная» Курант взял в кавычки, потому что он имел при этом в виду всю содержательную и наполненную смыслом математику. Сам он не проводил различия между чистой и прикладной математикой.
Пророчество Куранта сбылось. Поскольку система ценностей, принятая в математическом сообществе, отдает предпочтение чистой математике, лучшие работы в области прикладной математики выполняют инженеры-электрики, вычислители, биологи, физики, химики и астрономы. Подобно тем математикам, которых Гулливер встретил во время путешествия в Лапуту, пуристы живут на острове, висящем над Землей. Решать проблемы, связанные с жизнью общества на Земле, они предоставляют другим. Еще какое-то время такие математики будут жить в атмосфере, созданной для их науки усилиями математиков прошлого, но по исчерпании запасов живительного воздуха они обречены на гибель от удушья.
Талейран заметил однажды, что идеалист не может долго оставаться идеалистом, если он не реалист, и реалист не может долго оставаться реалистом, если он не идеалист. Применительно к математике высказывание Талейрана можно истолковать так, что реальные проблемы необходимо идеализировать и изучать абстрактно, но деятельность идеалиста, игнорирующего реальность, не жизнеспособна. Математика должна прочно стоять на земле и уходить головой в облака. Подлинную, живую, содержательную математику рождает сочетание абстракции и конкретных проблем. Математики могут воспарять в облака абстрактного мышления, но, подобно птицам, за пищей должны возвращаться на землю. Чистую математику можно сравнить с тортом, подаваемым на десерт. Он приятен на вкус и даже способен в какой-то мере насытить нас, но организм не может существовать только на тортах — без «мяса и картошки» реальных проблем, составляющих основу его питания.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Математика. Утрата определенности."
Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Морис Клайн - Математика. Утрата определенности."
Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.