» » » » Алексей Лобанов - Энциклопедия финансового риск-менеджмента


Авторские права

Алексей Лобанов - Энциклопедия финансового риск-менеджмента

Здесь можно купить и скачать "Алексей Лобанов - Энциклопедия финансового риск-менеджмента" в формате fb2, epub, txt, doc, pdf. Жанр: Управление, подбор персонала, издательство Литагент Альпина, год 2019. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алексей Лобанов - Энциклопедия финансового риск-менеджмента
Рейтинг:
Название:
Энциклопедия финансового риск-менеджмента
Издательство:
неизвестно
Год:
2019
ISBN:
978-5-9614-2284-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Энциклопедия финансового риск-менеджмента"

Описание и краткое содержание "Энциклопедия финансового риск-менеджмента" читать бесплатно онлайн.



Эта книга – первое в России издание учебно-энциклопедического характера, в котором в соответствии с международными стандартами освещаются основные вопросы финансового риск-менеджмента. Издание дополнено новыми материалами по организационным аспектам риск-менеджмента, моделям эволюции процентных ставок, рискам страхования банковских вкладов и анализу макроэкономических рисков. Рассмотрены современные методы количественной оценки и управления финансовыми рисками, теория экстремальных значений, соглашения о форвардной процентной ставке и др. Дан систематизированный обзор методов количественного анализа, используемых в риск-менеджменте, моделей ценообразования и стратегий применения производных финансовых инструментов. Приведен обзор основных положений Нового базельского соглашения по капиталу 2004 г., выполненных на основе последней редакции соглашения от ноября 2006 г. Книга предназначена для профессионалов, непосредственно занимающихся оценкой и управлением рисками, преподавателей, студентов и аспирантов экономических факультетов вузов. Она также может использоваться для подготовки к сдаче международных экзаменов по финансовому риск-менеджменту на получение сертификатов Financial Risk Manager (FRM®) и Professional Risk Manager (PRM®).





Таким образом, при моделировании эволюции цены облигации с нулевым купоном необходимо учитывать эффект приближения к номиналу (pull to par), а геометрическое броуновское движение этот эффект не учитывает, так как растет во времени линейно.

В общем случае найти решение стохастического дифференциального уравнения (1.71) в явном виде не удается. Поэтому для моделирования траекторий случайного процесса Ито часто применяется метод Монте-Карло.



Чтобы смоделировать траекторию случайного процесса Ито на отрезке [t, Т], этот отрезок разбивается на n равных частей (n должно быть большим), а затем разыгрывается случайная величина ξ, распределенная нормально с параметрами Тогда для последовательности случайных чисел δ1, δ2…., δn будет построена соответствующая последовательность значений случайной величины ξ, а траектория случайного процесса Ито будет определяться точками:



Указанным выше способом можно построить сколь угодно много траекторий случайного процесса Ито.

1.29. Основы теории экстремальных значений

Дана последовательность независимых одинаково распределенных случайных величин: η1, η2…., ηn…. с функцией распределения F(x).

Можно рассмотреть новую последовательность случайных величин {Mn}, где Mn = max {η1, η2…., ηn….}, n = 1, 2, 3…..

Функция распределения случайной величины Mn определяется следующим образом:



Теорема Фишера-Типпета

Дана последовательность независимых одинаково распределенных случайных величин η1, η2…., ηn…..




Следствие из теоремы Фишера – Типпета

Если случайные величины η1, η2, …, ηn независимы и одинаково распределены, а n достаточно велико, то функция распределения случайной величины Mn = max{η1, η2, …, ηn} практически совпадает с функцией обобщенного распределения экстремальных значений (при подходящем выборе параметров ξ, μ и σ).

Предположим, что случайная величина Mn = max{η1, η2, …, ηn} имеет распределение Фреше, т. е.



Тогда справедливы следующие утверждения:

1. Плотность распределения случайной величины Mn имеет следующий вид (рис. 1.32).



2. Математическое ожидание и дисперсии случайной величины Mn можно найти по формулам:



Параметры ξ, μ, σ можно подобрать на основе статистических данных.

Для измерений экстремальных событий может быть использовано распределение Парето (Pareto distribution), которое определяется функцией:



Для большого класса случайных величин η при достаточно большом пороговом значении u справедливо равенство:



Соотношение (1.85) позволяет оценивать «хвосты» распределений на основе статистических данных.

Литература

1. Барбаумов В. Е., Гладких И. М., Чуйко А. С. Финансовые инвестиции: Учебник. – М.: Финансы и статистика, 2003.

2. Доугерти К. Введение в эконометрику. – М.: ИНФРА-М, 2001.

3. Дуглас Л. Г. Анализ рисков операций с облигациями на рынке ценных бумаг. – М.: Филинъ, 1998.

4. Количественные методы финансового анализа / Под. ред. С. Дж. Брауна, М. П. Крицмена. – М.: ИНФРА-М, 1996.

5. Fabozzi F. J. Fixed income mathematics. 3rd ed. – N.Y.: McGraw-Hill, 1997.

6. Fabozzi F. J. (ed.) Advances in fixed income valuation, modeling and risk management. – Pennsylvania: Associates New Hope, 1997.

II. Производные финансовые инструменты

В. Е. Барбаумов

2.1. Введение

В настоящее время для идентификации и измерения рисков широко используется теория производных финансовых инструментов. Изучение производных финансовых инструментов важно еще и потому, что сами эти инструменты являются источниками рисков как для различных финансовых институтов, так и для финансового рынка в целом. Кроме того, производные финансовые инструменты – одно из важнейших средств хеджирования тех или иных рисков. Именно поэтому данная глава посвящена изучению производных финансовых инструментов.

В главе рассматриваются как простейшие производные финансовые инструменты – форвардные и фьючерсные контракты, свопы, так и более сложные – опционы различных видов и инструменты со встроенными опционами. Основное внимание уделяется методам оценки таких инструментов и основным направлениям их использования.

Важнейшими производными финансовыми инструментами являются классические европейские и американские опционы. Подробно рассматриваются методы оценки таких опционов в случае, когда стоимость исходных активов определяется геометрическим броуновским движением. В частности, приводятся формулы Блэка-Шоулза для оценки европейских опционов и разбирается их использование. Применение классических опционов для хеджирования основных финансовых рисков также рассматривается в данной главе.

В заключительной части главы обосновывается построение биномиальной модели процентной ставки и ее использование для оценки финансовых инструментов, производных от процентных ставок: кэпов, флоров, свопционов и облигаций со встроенными опционами. Кроме того, приводится обзор и других моделей временной структуры процентных ставок.

2.2. Форвардные контракты и их основные характеристики

В настоящее время на развитых финансовых рынках важную роль играют так называемые производные инструменты (derivatives). Простейшим из производных инструментов является форвардный контракт.

Форвардный контракт, или форвард (forward), представляет собой соглашение купить или продать некоторые активы, называемые «базисными» (underlying), в определенный момент времени в будущем по заранее установленной цене. Обычно форвардные контракты заключаются между финансовым институтом и одним из его корпоративных клиентов. Таким образом, в форвардном контракте всегда присутствуют две стороны. При этом говорят, что сторона, согласившаяся в будущем купить активы, занимает длинную позицию, а сторона, согласившаяся продать активы, – короткую.

Так как стороны форвардного контракта равноправны и подвержены одному и тому же риску, то при заключении форвардного контракта никто никому ничего не платит. Это означает, что в момент заключения форвардного контракта стоимость его равна нулю.

Цену, по которой стороны согласились купить (и соответственно продать) активы, называют ценой поставки активов (delivery price). Цену поставки обозначим через K. Момент времени, когда происходит покупка и продажа активов, называют датой исполнения форвардного контракта, или датой поставки. Момент исполнения форвардного контракта обозначим через Т.

В момент исполнения форвардного контракта доход (выигрыш) от той или иной позиции определяется в зависимости от цены поставки K и спот-цены активов ST. Доход от длинной позиции в момент Т равен ST – K, а от короткой позиции K – ST (рис. 2.1 и 2.2).

В дальнейшем мы будем исходить из следующих предположений:

1. Рынки являются совершенными (perfect):

• отсутствуют транзакционные расходы и налоги;

• ни один инвестор, покупая или продавая активы, не может повлиять на цены;

• разрешены короткие продажи.

2. Участники рынка могут неограниченно кредитовать или занимать деньги под одну и ту же безрисковую ставку (при непрерывном начислении).

3. По форвардным сделкам отсутствует кредитный риск.

4. Отсутствуют прибыльные арбитражные возможности, т. е. нельзя получить безрисковый доход за счет различия цен на активы.

При соблюдении этих условий все форвардные контракты на один и тот же вид активов с датой поставки Т будут в данный момент времени заключаться по одной и той же цене поставки.

Действительно, предположим, что в данный момент времени можно заключить форвардные контракты с ценами поставки К1 и K2, где K1 > K2.




Тогда можно занять короткую позицию по первому контракту и одновременно длинную позицию по второму контракту, при этом начальные затраты будут нулевыми. В момент Т исполнения контрактов будет получен доход K1 – K2 на каждую единицу активов. Так как отсутствуют прибыльные арбитражные возможности, то этого быть не может. В силу этого закона одной цены имеет смысл следующее определение:

Цена поставки, по которой в данный момент времени t заключаются форвардные контракты на данный вид активов с датой исполнения Т, называется форвардной ценой активов (forward price) на срок Т – t лет.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Энциклопедия финансового риск-менеджмента"

Книги похожие на "Энциклопедия финансового риск-менеджмента" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алексей Лобанов

Алексей Лобанов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алексей Лобанов - Энциклопедия финансового риск-менеджмента"

Отзывы читателей о книге "Энциклопедия финансового риск-менеджмента", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.