Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Дискретная математика. Краткий курс. Учебное пособие"
Описание и краткое содержание "Дискретная математика. Краткий курс. Учебное пособие" читать бесплатно онлайн.
В пособии изложены основные разделы современной дискретной математики. Рассматриваются вопросы, связанные с теорией множеств, теорией отношений, теорией графов и логикой. Материал построен на основе курса лекций, читаемого автором в технических вузах. В каждой главе рассмотрено большое число задач с подробными решениями и примерами, что позволяет эффективно и быстро осваивать изучаемую тему. Для студентов, обучающихся по специальности «Прикладная математика», а также для студентов технических и экономических факультетов, изучающих курс «Дискретная математика» и компьютерные технологии. Представляет интерес для тех, кто связан с использованием методов дискретной математики.
Множество В задано списком букв, однако буква d повторяется дважды. С точки зрения определения это множество эквивалентно следующему: { a, d, c, f }, а такие разные списки могут приводить к недоразумениям. Поскольку во втором списке буква d выброшена из множества, то получается, что d ∉ B, в то же время очевидно, что d ∈ B. Чтобы избежать подобных недоразумений, более рационально задавать множества перечислением элементов без повторения одинаковых.
Множество С не содержит ни одного элемента, т. е. является пустым (C = Ø). В данном случае x должно быть равным нулю или – 8 и тогда
= 2, или
= 2, но ни 0, ни – 8 не является натуральными числами. Возникает вопрос – почему же тогда задаются пустые множества, если они не существуют? Причина в том, что это не всегда заранее известно. Например, если множество задано формулой и производится преобразование этой формулы, то может оказаться, что какая-то часть этой формулы не имеет элементов. Но наличие пустых множеств и наличие правил действий с ними позволяет выполнять преобразования и таких формул. С другой стороны, в настоящее время имеется множество улиц Москвы, на которых в течение дня бывают пробки. Однако никто не может дать гарантии, что не наступит время, когда это множество станет пустым.
Множество D также правильно определено, но его элементами являются множества, т. е. это множество множеств.
1.2. Найти список элементов для каждого из множеств:
(а) А = {x: x ∈ N, x – нечетно и x < 10},
(b) B = {x: x ∈ N,
∈N и x < 50},
(c) C = {x: x ∈ N и
< 3x}.
(a) А состоит из нечетных натуральных чисел, меньших 10, поэтому
A = {1, 3, 5, 7, 9};
(b) B состоит из натуральных чисел, меньших 50, для которых квадратный корень из выражения 4х + 1 является натуральным числом, поэтому
В = {2, 6, 12, 20, 30, 42};
(с) C состоит из натуральных чисел, для которых квадратный корень меньше кубического корня из утроенного х. Это выполняется для первых 8 натуральных чисел, поэтому
С = {1, 2, 3, 4, 5, 6, 7, 8 }.
1.3. Имеются следующие множества:
А = {1, 2}, B = { 1, 3, 5 }, C = {1, 2, 7, 9 }, D = {{1}, {2}}.
Определить, корректно ли поставлены символы ∈ и ⊆
(a) A ∉ C, потому что элементами множества C не являются множества.
(b) Ø ⊆ A, потому что Ø является подмножеством каждого множества.
(c) В ⊄ С, потому что элемент 4 ∈ В, но 4 ∉ С.
(d) A ⊆ С, потому что все элементы А также принадлежат и С.
(e) А ∉ D, потому что D не имеет элемента {1, 2}.
(f) 1 ∉ D, потому что элементом множества D является не число 1, а множество {1}.
(g) A ⊆ {1, 2,{1, 4}}, поскольку все элементы А являются элементами {1, 2,{1, 4}}
(h) {3} ∉ B, потому что 3 является элементом В, а {3} – нет.
1.4. Показать, что A = {2, 3, 4, 5} не является подмножеством В = {x: x ∈ N и х – простое число}.
Для доказательства необходимо показать, что в А есть по крайней мере один элемент, которого нет в В. Рассмотрим элемент 4 ∈ А, и поскольку 4 разлагается на произведение 4 = 2 * 2, то оно не является простым и поэтому не принадлежит множеству В.
1.5. Показать, что множество А = {a, d, c, d} является собственным подмножеством B = {a, b, c, d, f, g}.
Поскольку каждый элемент А принадлежит В, то А ⊆ В. Но в В есть элемент f ∉ A, поэтому А ≠ В и, следовательно, А является собственным подмножеством В, т. е. А ⊂ В.
1.6. Для множества А = {4, 6, 8, 10} найти его несобственное подмножество.
Несобственное подмножество А должно состоять из тех же самых элементов, что и само множество А, т. е. это множество {4, 6, 8, 10}.
Операции над множествами
1.7. Найти все пересечения и объединения следующих множеств:
A = (1, 2, 3, 4, 6}, B = {3, 4, 5, 7 }, C = {6, 7, 8}.
Пересечение множеств А и В состоит только из тех элементов, которые входят и в А и в В, а объединение – из тех элементов, которые входят в А, входят в В, а также тех, которые являются общими для них, т. е. входят в их пересечение:
А ∩ В = {3, 4} А ∩ C = {6} B ∩ C = {7} А ∩ В ∩ C = Ø,
A ∪ B = {1, 2, 3, 4, 5, 6, 7} A ∪ C = {1, 2, 3, 4, 6, 8} B ∪ C ={3, 4, 7, 8},
A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}.
1.8. Даны пересечения и объединения множеств А, В и С.
А ∩ В = {4} А ∩ C = {5} B ∩ C = {7}
A ∪ B = {1, 2, 3, 4, 5, 6, 7} A ∪ C = {1, 2, 3, 4, 5, 7, 8, 9} B ∪ C = {4, 5, 6, 7, 8, 9}.
Найти множества A, B, C.
Нетрудно видеть, что А ∩ В ∩ C = Ø, потому что нет ни одного элемента, общего для всех трех пересечений А ∩ В, А ∩ C и B ∩ C. Найдем элементы множества А. Ясно, что А содержит элементы 4 и 5, поскольку они входят в пересечение А с В и А с C. Рассмотрим пересечение множеств A ∪ B и A ∪ C, оно состоит из элементов {1, 2, 3, 4, 5, 7} и включает в себя все элементы множества А и все элементы пересечения B ∩ C = {7}. Убрав элемент 7, мы и получим множество А = {1, 2, 3, 4, 5}.
Такое же рассуждение позволяет найти и множество В. Сначала найдем пересечение двух объединений A ∪ B и B ∪ C. Это будет множество {4, 5, 6, 7}. Затем удалим из него пересечение А ∩ C = {5}, которое не входит в В, и получим множество B ={4, 5, 6}.
Чтобы найти элементы С, найдем пересечение A ∪ C и B ∪ C, которое состоит из элементов {4, 5, 7, 8, 9}, и удалим из него пересечение А ∩ В = { 4}. Элемент 4 не может входить в С, поскольку он входит и в А, и в В. Если бы он входил и в С, то тогда пересечение А ∩ В ∩ C состояло бы из элемента 4, но оно пусто. Поэтому C = {5, 7, 8, 9}.
Найти множества А, В, С можно и при помощи других рассуждений. Например, найдем множество А. Для этого удалим из множества A ∪ B все элементы множества B ∪ C и получим множество {1, 2, 3}. Оно состоит из элементов множества А и не содержит тех элементов А, которые входят в пересечение А с В и А с С. Добавив эти элементы, мы и получим множество А = {1, 2, 3, 4, 5}.
1.9. Дано универсальное множество U = {1, 2, 3, 4, 5, 6, 7, 8, 9} и множества
A = { 1, 2, 3, 4} B = {3, 4, 5, 6, 7} C = {4, 6, 7, 8, 9}.
Найти:
(a) АС, ВС, СС;
(b) A\B, B\A, A\C, B\C;
(c) A
B, A
C, B
C;
(d) A ∪ (B ∩ C);
(e) (A ∩ B)C;
(f) (A ∪ B) ∩ (B ∩ C)C;
(g) AС ∩ BC ∩ C.
Вспомним, что:
дополнение АС состоит из тех элементов универсального множества, которые не входят в А;
разность множеств А\В состоит из тех элементов А, которые не принадлежат В;
симметрическая разность A
B состоит из тех элементов А или В, которые не входят в пересечение А и В.
(a) АС = {5, 6, 7, 8, 9}; BC = {1, 2, 8, 9}; CC = {1, 2, 3, 5};
(b) A\B = {1, 2}; B\A = {5, 6, 7}; A\C = {1, 2, 3}; B\C = {3, 5};
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Дискретная математика. Краткий курс. Учебное пособие"
Книги похожие на "Дискретная математика. Краткий курс. Учебное пособие" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие"
Отзывы читателей о книге "Дискретная математика. Краткий курс. Учебное пособие", комментарии и мнения людей о произведении.