» » » » Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие


Авторские права

Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие

Здесь можно купить и скачать "Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство ЛитагентПроспект (без drm)eba616ae-53d9-11e6-9ba0-0cc47a1952f2. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие
Рейтинг:
Название:
Дискретная математика. Краткий курс. Учебное пособие
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Дискретная математика. Краткий курс. Учебное пособие"

Описание и краткое содержание "Дискретная математика. Краткий курс. Учебное пособие" читать бесплатно онлайн.



В пособии изложены основные разделы современной дискретной математики. Рассматриваются вопросы, связанные с теорией множеств, теорией отношений, теорией графов и логикой. Материал построен на основе курса лекций, читаемого автором в технических вузах. В каждой главе рассмотрено большое число задач с подробными решениями и примерами, что позволяет эффективно и быстро осваивать изучаемую тему. Для студентов, обучающихся по специальности «Прикладная математика», а также для студентов технических и экономических факультетов, изучающих курс «Дискретная математика» и компьютерные технологии. Представляет интерес для тех, кто связан с использованием методов дискретной математики.






Шаг 1. Используя законы Де Моргана и инволюции, получим

Е = ((АВС) ∪ ВС ∪ С) ∩ ((ВС ∪ СС) ∩ (АСС) ∪ (АВ)).

Шаг 2. Используя закон дистрибутивности, раскроем скобки в правой части выражения:

Е = ((АВС) ∪ ВС ∪ С) ∩ ((АВС) ∪ (ВС ∩ СС) ∪ (А ∩ ∩ СС) ∪ (СС ∩ СС) ∪ (АВ)).

Шаг 3. Преобразуем пересечение литералов в произведение:

Е = ((АВС) ∪ ВС ∪ С) ∩ ((АВС) ∪ (ВС ∩ СС) ∪ (АСС) ∪ ∪ СС ∪ (АВ)).

Шаг 4. Поскольку ВС включается в АВС, то АВС поглощается, также СС включается в ВС ∩ СС и АСС, поэтому оба эти пересечения поглощаются и выражение Е принимает следующий вид:

Е = (ВС ∪ С) ∩ ((АВС) ∪ СС ∪ (АВ)).

Здесь снова надо раскрывать скобки, поэтому переходим к шагу 2.

Шаг 2. Раскроем скобки и получим:

Е = (АВС ∩ВС) ∪ (ВС ∩ СС) ∪ (АВВС) ∪ (АВС ∩ ∩ С) ∪ (ССС) ∪ (АВС).

Шаг 3. Преобразуем пересечение литералов в произведение:

Е = (АВС) ∪ (ВС ∩ СС) ∪ Ø ∪ (АВС ∩ С) ∪ Ø ∪ (А ∩ ∩ ВС).

Шаг 4. Пересечение АВС включается в АВС ∩ С, поэтому последнее поглощается и нормальная форма для Е имеет вид

Е = (АВС) ∪ (ВС ∩ СС) ∪ (АВС).

1.13. Полные нормальные формы

Следует отметить, что терминология этого раздела не стандартизирована, так по аналогии с булевой алгеброй полные нормальные формы иногда называют совершенными нормальными формами. Рассмотрим выражение Е = Е(x1, x2, … xn), состоящее из объединения произведений, т. е. представленное в нормальной форме. Если каждое произведение состоит точно из n литералов, то такое выражение называется полной нормальной формой объединения пересечений.

Теорема 1.2. Любое выражение алгебры множеств может быть преобразовано к эквивалентному ему выражению в полной нормальной форме, и такое представление является единственным.

В предыдущем разделе было показано, как преобразовать любое выражение алгебры множеств к эквивалентному выражению в нормальной форме. Далее рассмотрим алгоритм, позволяющий трансформировать это выражение в эквивалентное ему выражение в полной нормальной форме. Идея этого алгоритма состоит в том, что если какое-то произведение Р в выражении Е не содержит i-й переменной, то ее можно вести в Е, образуя произведение Р∩(xi∪xic) при i < n.

Алгоритм 1.2 для преобразования выражения к полной нормальной форме объединения пересечений.

Шаг 1. Пусть имеется выражение Е = Е(x1, x2, …xn), представленное в нормальной форме. Найдем произведение Р в выражении Е, которое не содержит i-й переменной, и образуем произведение Р∩(xi∪xic). Это не нарушает эквивалентности выражения, поскольку (xi∪xic) = U, а РU = Р. Удалим повторяющиеся произведения (это возможно, поскольку РР = Р).

Шаг 2. Повторяем шаг 1 до тех пор, пока каждое произведение в Е не станет фундаментальным произведением, т. е. каждое произведение не будет включать в себя все n переменных.

Пример 1.8. Применим данный алгоритм для выражения Е в нормальной форме, полученного в примере 1.7, чтобы преобразовать его к полной нормальной форме.

Е = (АВС) ∪ (ВС ∩ СС) ∪ (АВС).

Шаг 1. Находим произведение АВС, которое не содержит переменной С, и образуем произведение (АВС) ∩ (ССС), получим

Е = (АВС) ∩ (ССС) ∪ (ВС ∩ СС) ∪ (АВС) = (АВС ∩ С) ∪ (АВС ∩ СС) ∪ (ВС ∩ СС) ∪ (АВС).

Шаг 2. Поскольку в Е имеется произведение ВС ∩ СС, которое не содержит переменной А, то снова переходим к шагу 1 и образуем произведение (ВС ∩ СС) ∩ (ААС),

Е = (АВС ∩ С) ∪ (АВС ∩ СС) ∪ (ВС ∩ СС) ∩ (ААС) ∪ ∪ (АВС).

После раскрытия скобок в Е образуется два одинаковых фундаментальных произведения АВС ∩ СС. Одно из них необходимо удалить. Теперь Е представлено в полной нормальной форме:

Е = (АВС ∩ С) ∪ (АВС ∩ СС) ∪ (АС ∩ ВС ∩ СС) ∪ (А ∩ ∩ ВС).

Таким образом, если имеется выражение, представленное в нормальной форме, то данный алгоритм позволяет алгебраическими преобразованиями привести его к полной нормальной форме. Однако этот способ не единственный. Для этой же цели можно также использовать и диаграммы Венна.

Рассмотрим пример. Пусть имеется разбиение множества U, показанное на рис. 1.10. Выделим множество, которое задается формулой (нормальной формой объединения пересечений) А ∪ (ВС ∩ С). Она задает объединение двух множеств: А = {4, 5, 6, 7} и множества, представляющего собой пересечение множеств ВС и С, т. е. множества ВС ∩ С = {1, 5}. Поэтому множество А ∪ (ВС ∩ С) = {1, 4, 5, 6, 7}. На рис. 1.12 это множество заштриховано. Из диаграммы видно, что множество А ∪ (ВС ∩ С) задается объединением пяти фундаментальных произведений: множеству {4} соответствует фундаментальное произведение АВС ∩ СС, множеству {6} – АВСС, множеству {7} – АВС, множеству {5} – А ∩ ВC ∩ С и множеству {1} – АC ∩ ВС ∩ С. Объединение этих фундаментальных произведений и дает полную нормальную форму

(АВС ∩ СС) ∪ (АВСС) ∪ (АВС) ∪ (АВС ∩ ∩ С) ∪ (АС ∩ ВС ∩ С).




Рис. 1.12

Заметим, что для любого множества существует не только единственная полная нормальная форма объединения пересечений, но и единственная полная нормальная форма пресечения объединений. Эту форму также можно найти двумя способами. Так, для множества из предыдущего примера А ∪ (ВС ∩ С) раскроем скобки и получим выражение в нормальной форме пересечения объединений (АВС) ∩ (АС). В первой скобке нет переменной С, а во второй переменной В. Поскольку выражение (ССС) = Ø, то следующее выражение эквивалентно исходному

((АВС) ∪ (ССС)) ∩ ((АС) ∪ (ВВС)) = (АВС ∪ С) ∩ (АВС ∪ СС) ∩ (АВС) ∩ (АВС ∪ С) = (АВС ∪ С) ∩ (АВС ∪ СС) ∩ (АВС).

Последнее выражение и будет полной нормальной формой пересечения объединений для исходной формулы.

Найти данное выражение можно также и при помощи диаграммы Венна. Поскольку в исходное множество {1, 4, 5, 6, 7} не вошли элементы {0, 2, 3 }, то необходимо образовать пересечение таких объединений, которые не содержат эти три множества. Объединение АВС не содержит элемента {0}, объединение АВС ∪ С не содержит элемента {2} и объединение АВС ∪ СС не содержит элемента {3}. Отсюда, образовав из них пересечение, можно получить полную нормальную форму пересечения объединений


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Дискретная математика. Краткий курс. Учебное пособие"

Книги похожие на "Дискретная математика. Краткий курс. Учебное пособие" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Казанский

Александр Казанский - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие"

Отзывы читателей о книге "Дискретная математика. Краткий курс. Учебное пособие", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.