» » » » Владимир Живетин - Введение в теорию риска (динамических систем)


Авторские права

Владимир Живетин - Введение в теорию риска (динамических систем)

Здесь можно купить и скачать "Владимир Живетин - Введение в теорию риска (динамических систем)" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Изд-во Института проблем риска, Информационно-издательский центр «Бон Анца», год 2009. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Живетин - Введение в теорию риска (динамических систем)
Рейтинг:
Название:
Введение в теорию риска (динамических систем)
Издательство:
неизвестно
Год:
2009
ISBN:
978-5-98664-052-5, 978-5-903140-63-3
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Введение в теорию риска (динамических систем)"

Описание и краткое содержание "Введение в теорию риска (динамических систем)" читать бесплатно онлайн.



В работе рассматриваются основы структурно-функционального синтеза и анализа динамических систем, позволяющие сформулировать вводные положения теории риска, включая оценку опасных и безопасных состояний динамических систем.

В работе вводятся первичные и вторичные показатель риска как для классических информационно-энергетических систем, так и для суперклассических – интеллектуально-энергетических систем.

Первичные показатели риска характеризуются множеством безопасных состояний, рассчитанных согласно, например, теории устойчивости; вторичные показатели риска представляют собой вероятности выхода динамической системы в область критических состояний с учетом свойств систем контроля и управления.

Полученные результаты позволяют осуществить математическое моделирование прогнозирования и управления рисками различных динамических систем, включая интеллектуально-энергетические.






Рис. 1.37


Рис. 1.38


5. Измеренное значение γ индикатора х состояния динамической системы находится вне области допустимых значений, превышая (рис. 1.39). В итоге имеем Вγ {γ ≥ }.

6. Измеренное значение γ индикатора х находится вне области допустимых значений, не достигая (рис. 1.40). В итоге имеем Сγ {(γ ≤ )}.


Рис. 1.39


Рис. 1.40


В процессе контроля индикатора х, изменяющегося во времени на всей числовой оси, возможны следующие гипотезы.

Гипотеза Аα. Ограничиваемый индикатор х, его фактическое значение хф, находится в области допустимых значений, т. е. имеет место событие Аα.

Гипотеза Вα. Фактическое значение индикатора динамической системы находится вне области допустимых состояний Bα. С помощью средств контроля или оценки имеем Аγ, Вγ или Сγ.

Гипотеза Сα. Фактическое значение индикатора динамической системы находится вне области допустимых состояний Сα. С помощью средств контроля или оценки имеем Аγ, Вγ или Сγ.

В итоге имеем различные события Sij, которые сгруппируем следующим образом:

I. (Аα ∩ Аγ); → S11;

II. (Аα ∩ Сγ); (Аα ∩ Вγ); → S21, S22;

III. (Сα ∩ Аγ); (Вα ∩ Аγ); → S31, S32;

IV. (Сα ∩ Сγ); (Вα ∩ Вγ); → S41, S42;

V. (Сα ∩ Вγ); (Вα ∩ Сγ); → S51, S52.

Полученные события характеризуют следующие контролируемые состояния динамической системы:

I) безопасные (в норме);

II) опасное ложное из-за ошибок измерения (фактическое безопасное);

III) опасное (пропуск со стороны системы контроля);

IV) опасное известное (форс-мажор);

V) опасное известное – нонсенс (несообразность), вероятность которого пренебрежимо мала.

Каждое из событий Sij характеризуется соответствующей вероятностью:

1) вероятность Р11 = Р(S11) = Р(Аα ∩ Аγ) – когда поступает информация о допустимом состоянии х, и фактическое его значение хф допустимо;

2) вероятности Р21 = Р(S21) = Р(Аα ∩ Сγ) и Р22 = Р(S22) = Р(Аα ∩ Вγ) – когда значение хф находится в допустимой области, а система контроля фиксирует недопустимое значение;

3) вероятности Р31 = Р(S31) = Р(Сα ∩ Аγ) и Р32 = Р(S32) = Р(Вα ∩ Аγ) – значение хф находится вне допустимой области, но система контроля подает сигнал о допустимом состоянии объекта;

4) вероятности Р41 = Р(S41) = Р(Сα ∩ Сγ) и Р42 = Р(S42) = Р(Вα ∩ Вγ) – значение хф находится вне области допустимых состояний, одновременно система контроля подтверждает это состояние;

5) вероятности Р51 = Р(S51) = Р(Сα ∩ Вγ) и Р52 = Р(S52) = Р(Вα ∩ Сγ) – значение хф находится вне области допустимых состояний, например по минимуму (максимуму), а система контроля показывает, что объект находится в недопустимой области, но с противоположной стороны – максимальной (минимальной).

Совокупность Рij (; j = 1,2) образует полную группу несовместных событий, т. е. .

Событие (Аα ∩ Аγ) соответствует правильному анализу состояния системы, а вероятность Р11 характеризует безопасное ее состояние, при котором осуществляется основная цель динамической системы. Если же осуществляются такой контроль и управление, при которых наступают события S21, S22, S31, S32, S41, S42, S51, S52, то цель, поставленная перед управляющей системой, не выполняется, так как возникают неоправданные (лишние) затраты потенциала θ = (E,J,m) по управлению. Эти состояния характеризуются потерями и называются опасными.

В качестве основных интегральных характеристик невыполнения цели, т. е. риска, будем рассматривать вероятности событий (S21, S22), (S31, S32), (S41, S42), (S51, S52):


Р2 = Р(S21 S22) = Р(S21) + Р(S22),

Р3 = Р(S31 S32) = Р(S31) + Р(S32),

Р4 = Р(S41 S42) = Р(S41) + Р(S42),

Р5 = Р(S51 S52) = Р(S51) + Р(S52).


В дальнейшем из рассмотрения можно исключить ситуации, характеризуемые вероятностью Р4, когда система контроля нам указывает на критическую ситуацию, но мы не имеем в своем распоряжении управления, способного возвратить в область безопасных состояний.

Система контроля, для которой события S51 или S52 теоретически осуществимы, порождает измеренные случайные величины или процессы, когда хф находится в области (хф < ), а измеренное значение хизм – в области (хизм > ) (рис. 1.41, здесь φ(·) – плотность распределения) или наоборот.


Рис. 1.41


Если учитывать физическую нереализуемость такого контроля, то события S51 и S52 невозможны.

На примере вероятностей Р2, Р3, которые наиболее важны при оценке риска динамической системы, рассмотрим построение математической модели, позволяющей получить численную оценку вероятностей Р2 и Р3. Для вероятностей Р1, Р4, Р5 все выводы аналогичны и не представляют труда.

1.6.3. Интегральные показатели вероятностей рисков и безопасности

В качестве основных интегральных характеристик невыполнения цели будем рассматривать величины вероятностей событий (Аα ∩ В'γ), (B'α ∩ Aγ):


P2 = P(Aα ∩ B'γ) = P(Aα)Р(B'γ | Aα);

P3 = P(B'α ∩ Aγ) = P(B'α)Р(Aγ | В'α),


где В' = (Bγ Сγ), В'α = (Cα Bα).

Вероятность Р2 характеризует появление ложной информации, поэтому назовем ее вероятностью ложной оценки состояния, а Р(В'γ | Аα) = Р'2 – условной вероятностью ложной оценки состояния.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Введение в теорию риска (динамических систем)"

Книги похожие на "Введение в теорию риска (динамических систем)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Живетин

Владимир Живетин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Живетин - Введение в теорию риска (динамических систем)"

Отзывы читателей о книге "Введение в теорию риска (динамических систем)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.