» » » Ричард Фейнман - 6a. Электродинамика


Авторские права

Ричард Фейнман - 6a. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6a. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
6a. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6a. Электродинамика"

Описание и краткое содержание "6a. Электродинамика" читать бесплатно онлайн.








Оказывается, что четыре компоненты «скорости», которые нам нужно выписать, превратятся в компоненты четырехвектора, если мы попросту поделим их на Ц(1-v2). В правильности этого можно убедиться, взяв

четырехвектор импульса

(25.3)

и поделив его на массу покоя, которая в четырехмерном прост­ранстве является скаляром. Мы получим при этом

(25.4)

что по-прежнему должно быть четырехвектором. (Деление на скаляр не изменяет трансформационных свойств.) Так что четырехвектор скорости vmможно определить так:

(25.5)

Это очень полезная величина; мы можем теперь написать, например,

(25.6)

Таков типичный вид, который должен иметь правильное реляти­вистское уравнение: каждая сторона его должна быть четырехвектором. (В правой части стоит произведение инварианта на четырехвектор, которое по-прежнему есть четырехвектор.)

§ 2. Скалярное произведение

То, что расстояние от некоторой точки до начала координат не изменяется при повороте, если хотите,— счастливая случай­ность. Математически это означает, что r2=x2+y2+z2 является инвариантом. Другими словами, после поворота r'2=r2 или

Возникает вопрос: существует ли подобная величина, которая инвариантна при преобразованиях Лоренца? Да, существует. Из (25.1) вы видите, что

Она была бы всем хороша, если бы только не зависела от наше­го выбора оси х. Но этот недостаток легко исправить вычита­нием y/2 и z2. Тогда преобразование Лоренца плюс вращение оставляют ее неизменной. Таким образом, роль величины, ана­логичной трехмерному r2 в четырехмерном пространстве, играет комбинация

Она является инвариантом так называемой «полной группы Лоренца», которая включает как перемещения с постоянной скоростью, так и повороты.

Далее, поскольку эта инвариантность представляет собой алгебраическое свойство, зависящее только от правил преобра­зования (25.1) плюс вращение, то она справедлива для любого четырехвектора. (Все они, по определению, преобразуются оди­наковым образом.) Так что для любого четырехвектора аm

Эту величину мы будем называть квадратом «длины» четырехвектора ам. (Будьте внимательны! Иногда берут обратные зна­ки у всех слагаемых и квадратом длины называют число a2x+a2y+a2z -a2t)

Если теперь у нас есть два вектора аm и bm, то их одноименные компоненты преобразуются одинаково, поэтому комбинация

также будет инвариантной (скалярной) величиной. (Фактически мы доказали это уже в гл. 17, вып. 2.) Получилась величина, совершенно аналогичная скалярному произведению векторов. Мы так и будем называть ее скалярным произведением двух четырехвекторов. Логично, казалось бы, и записывать его аm·bm, чтобы оно даже выглядело похожим на скалярное произведение. Но обычно, к сожалению, так не делают и пишут его без точки.

И мы тоже будем придерживаться этого порядка и записывать скалярное произведение просто ambm. Итак, по определению,

(25.7)

Помните, что повсюду, где вы видите два одинаковых значка (вместо m мы иногда будем пользоваться v или другими бук­вами), необходимо взять четыре произведения и сложить их, не забывая при этом о знаке минус перед произведениями про­странственных компонент. С учетом такого соглашения инва­риантность скалярного произведения при преобразованиях Ло­ренца можно записать как

Поскольку последние три слагаемых в формуле (25.7) пред­ставляют просто трехмерное скалярное произведение, то часто удобнее принять такую запись:

Очевидно, что введенную выше четырехмерную длину можно записать как аmаm:

(25.8)

Но иногда удобно эту величину записать как а2m:

Продемонстрируем теперь плодотворность четырехмерного скалярного произведения. Антипротоны (р') получают на боль­ших ускорителях из реакции

Иначе говоря, высокоэнергетический протон сталкивается с по­коящимся протоном (например, с помещенной в пучок водород­ной мишенью), и если падающий протон обладает достаточной энергией, то вдобавок к двум первоначальным протонам может родиться пара протон—антипротон.

Какой энергией должен обладать падающий протон, чтобы эта реакция стала энергетически возможной?

Ответ легче всего получить, рассмотрев эту реакцию в систе­ме центра масс (ц. м.) (фиг. 25.1). Назовем падающий протон протоном а, а его четырехимпульс обозначим через рam. Анало­гично, протон мишени назовем b, а его четырехимпульс обозна­чим через рbm. Если энергии падающего протона как раз достаточ­но для реакции, то в конечном состоянии (т. е. в состоянии после соударения) образуется система, содержащая три протона и ан­типротон, покоящиеся в системе ц. м. Если энергия падающего протона будет несколько выше, то частицы в конечном состоя­нии вылетят с некоторой кинетической энергией и будут разле­таться в стороны; если же она немного ниже, то ее будет недо­статочно для образования четырех частиц.

Пусть рсm полный четырехимпульс всей системы в конеч­ном состоянии, тогда, согласно закону сохранения энергии и

а комбинируя эти два выражения, можно написать

(25.9)

Теперь еще одно важное обстоятельство: поскольку мы по­лучили уравнение для четырехвекторов, то оно должно выпол­няться в любой инерциальной системе. Этим фактом можно вос­пользоваться для упрощения вычислений. Напишем длины каждой из частей (25.9), которые, разумеется, тоже должны быть равны друг другу, т. е.

(25.10)

Так как рсm рсm инвариант, то можно вычислить его в ка­кой-то одной системе координат. В системе ц. м. временная компонента рсm равна энергии покоя четырех протонов, т. е. 4М, а пространственная часть р равна нулю, так что рсm=(4М, 0). При этом мы воспользовались равенством масс протона и антипротона, обозначив их одной буквой М.

Таким образом, уравнение (25.10) принимает вид

(25.11)

Произведения раmраm и pbmpbm, вычисляются очень быстро: «дли­на» четырехвектора импульса любой частицы равна просто квадрату ее массы:

Это можно доказать прямыми вычислениями или, несколько бо­лее эффектно, простым замечанием, что в системе покоя ча­стицы рm=(М, 0), а следовательно, рmрm=М2. А так как это инвариант, то он равен М2 в любой системе отсчета. Подставляя результаты в уравнение (25.11), мы получаем

или

(25.12)

Теперь можно вычислить раmрbmв лабораторной системе. В этой системе четырехвектор рам= а, ра), а рbm=(М, 0), ибо он описывает покоящийся протон. Итак, раmрbmдолжно быть рав­но МЕа, а мы знаем, что скалярное произведение — это инвари­ант, поэтому оно должно быть равно значению, найденному нами в (25.12). В результате получается

Полная энергия падающего протона должна быть по мень­шей мере равна (что составляет около 6,6 Гэв, так как М=938 Мэв) или после вычитания массы покоя М получаем, что кинетическая энергия должна быть равна по меньшей мере 6 М (около 5,6 Гэв). Именно с тем, чтобы иметь возможность производить антипротоны, бетатрон в Беркли проектировался на кинетическую энергию ускоренных протонов около 6.2 Гэв.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6a. Электродинамика"

Книги похожие на "6a. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6a. Электродинамика"

Отзывы читателей о книге "6a. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.