» » » Ричард Фейнман - 6a. Электродинамика


Авторские права

Ричард Фейнман - 6a. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6a. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
6a. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6a. Электродинамика"

Описание и краткое содержание "6a. Электродинамика" читать бесплатно онлайн.








§ 5. Четырехмерный потенциал движущегося заряда

Теперь выпишем законы преобразования, выражающие j и А в движущейся системе через j и А в неподвижной, хотя неяв­но мы уже говорили о них. Поскольку Аm = (j, А) является четырехвектором, это уравнение должно выглядеть подобно (25.1), за исключением того, что t нужно заменить на j, а x — на А. Таким образом,

(25.24)

При этом предполагается, что штрихованная система координат движется по отношению к нештрихованной со скоростью v в направлении оси х.

Рассмотрим один пример плодотворности идеи 4-потенциала. Чему равны векторный и скалярный потенциалы заряда q, движущегося со скоростью v в направлении оси х! Задача очень упрощается в системе координат, движущейся вместе с заря­дом, ибо в этой системе заряд покоится. Пусть заряд находится в начале координат системы S', как это показано на фиг. 25.2.

Фиг. 23.2. Система отсчета S' движется со ско­ростью v (в направлении оси х) по отношению к системе S.

Заряд, покоящийся в начале системы координат S', нахо­дится в системе S в точке x=vt. Потенциалы в точке Р могут быть найдены для любой системы отсчета.

Скалярный потенциал в движущейся системе задается выраже­нием

(25.25)

причем r' — расстояние от заряда q до точки в движущейся си­стеме, где производится измерение поля. Векторный же потен­циал А', разумеется, равен нулю.

Теперь без особых хитростей можно найти потенциалы j и А в неподвижной системе координат. Соотношениями, обрат­ными к уравнениям (25.24), будут

(25.26)

Используя далее выражение для j'[см. (25.25)] и равенство А'=0, получаем

Эта формула дает нам скалярный потенциал j, который мы уви­дели бы в системе S, но он, к сожалению, записан через коорди­наты штрихованной системы. Впрочем, это дело легко попра­вимо; с помощью (25.1) можно выразить t', х', у', z' через t, x, у, z и получить

(25.27)

Повторяя ту же процедуру для вектора А, вы можете показать,

что

А = vj. (25.28)

Это те же самые формулы, которые мы вывели в гл. 21, но там они были получены другим методом.

§ 6. Инвариантность уравнений электродинамики

Итак, потенциалы j.и А, оказывается, образуют в совокупно­сти четырехвектор, который мы обозначили через Аm, а вол­новое уравнение (полное уравнение, выражающее Аmчерез jm) можно записать в виде (25.22). Это уравнение вместе с сохране­нием заряда (25.19) составляют фундаментальный закон электромагнитного поля:

(25.29)

И вот, пожалуйста, все уравнения Максвелла просто и красиво записываются всего в одной строке. Достигли ли мы чего-ни­будь, записав их в таком виде, кроме, разумеется, красоты и простоты? Прежде всего, есть ли здесь какое-нибудь отличие от того, что было раньше, когда мы выписывали их во всем разнообразии компонент? Можно ли из этих уравнений получить не­что, чего нельзя получить из волновых уравнений для потенциа­лов, содержащих заряды и токи? Ответ вполне определенный — конечно, нельзя. Единственное, что мы сделали — это изменили названия, т. е. использовали новые обозначения. Мы нарисо­вали квадратик для обозначения производных, но это по-преж­нему не более и не менее как вторая производная по t минус вторая производная по х, минус вторая производная по у, ми­нус вторая производная по z. А значок m, говорит, что у нас есть четыре уравнения, по одному для каждого из значений m=t, х, у или z. Какой же тогда смысл того, что уравнения можно записать в столь простой форме? С точки зрения получения чего-то нового — никакого. Хотя, возможно, про­стота уравнений и выражает определенную простоту природы. Сейчас я покажу вам нечто интересное, чему мы понемногу научились. Можно сказать, что все законы физики описываются

одним уравнением:

U=0. (25.30)

Не правда ли, удивительно простое уравнение! Конечно, нуж­но еще знать, что обозначает символ U. Это физическая ве­личина, которую мы будем называть «несообразностью» ситуации. У нас даже есть для нее формула. Вот как вычисляется эта несообразность: вы берете все физические законы и записы­ваете их в особой форме. Например, вы взяли закон механики F=ma и записали его в виде F-ma=0.

Теперь вы можете ве­личину (F-mа), которая, разумеется, в нашем мире должна быть нулем, назвать «несообразностью» механики. Затем вы бе­рете квадрат этой несообразности, обозначаете его через U1 и называете ее «механической несообразностью». Другими сло­вами, вы берете

(25.31)

который можно назвать «гауссовой электрической несообраз­ностью». Продолжая этот процесс, вы можете ввести U3, U4 и т. д. для каждого из физических законов.

Наконец, полной несообразностью мира U вы называете сумму Ui,- для каждого из различных явлений, т. е. U=2Ui .

И тогда «великий закон природы» гласит:

(25.32)

Этот «закон», разумеется, утверждает лишь, что сумма квад­ратов всех отдельных отклонений равна нулю, однако един­ственный способ сделать сумму квадратов множества членов равной нулю — это приравнять нулю каждое из ее слагаемых.

Таким образом, «удивительно простой закон» (25.32) экви­валентен целому ряду уравнений, которые вы писали первона­чально. Поэтому совершенно очевидно, что простые обозначе­ния, скрывающие сложности за определением символов,— это еще не истинная простота. Это только трюк. Так и в выражении (25.32) за кажущейся простотой скрывается несколько уравне­ний; это снова не более чем трюк. Развернув их, вы снова полу­чите то, что было раньше.

Однако закон электродинамики, написанный в форме урав­нения (25.29), содержит нечто большее, чем простую запись; в векторном анализе, кроме простоты записи, также есть нечто большее. Тот факт, что уравнения электромагнетизма можно за­писать в особых обозначениях, которые специально приспособ­лены для четырехмерной геометрии преобразований Лоренца, иначе говоря, как векторные уравнения в четырехмерном мире, означает, что они инвариантны относительно преобразований Лоренца. Именно потому, что уравнения Максвелла инвариантны относительно этих преобразований, их можно записать в столь красивом виде.

В том, что законы электродинамики можно записать в форме элегантного уравнения (25.29), нет ничего случайного. Теория относительности была развита именно потому, что эксперимен­тально подтвердилась неизменность предсказанных уравнением Максвелла явлений в любой инерциальной системе. Именно при изучении трансформационных свойств уравнений Максвелла Лоренц открыл свои преобразования как преобразования, ос­тавляющие инвариантными эти уравнения.

Однако есть и другая причина записывать уравнения в та­ком виде. Было обнаружено, что все законы физики должны быть инвариантными относительно преобразований Лоренца (первый об этом догадался Эйнштейн). Таково содержание прин­ципа относительности. Поэтому если вы изобрели обозначения, которые сразу же показывают, инвариантен ли выписанный нами закон, то можно гарантировать, что при попытке соз­дать новую теорию вы будете писать только уравнения, согла­сующиеся с принципом относительности.

В простоте уравнений Максвелла в этих частных обозначе­ниях никакого чуда нет. Обозначения специально были приду­маны именно для них. Самая интересная с физической точки зрения вещь состоит в том, что любой физический закон (будь то распространение мезонных волн, или поведение нейтрино в b-распаде, или что-то другое) должен иметь ту же самую инвариантность относительно тех же преобразований. Так что если ваш звездолет движется с постоянной скоростью, то все законы природы вместе преобразуются так, что никаких новых явлений не возникает. Именно благодаря тому, что принцип относитель­ности является законом природы, уравнения нашего мира в четырехмерных обозначениях должны выглядеть гораздо проще.

*Вас может удивить, почему же мы не пользуемся реакцией

Или даже

для которой, несомненно, требуется меньшая энергия? Все дело в прин­ципе, называемом сохранением барионного заряда, согласно которому вели­чина, равная числу протонов минус число антипротонов, не может изме­ниться. В левой стороне нашей реакции эта величина равна 2. Следова­тельно, если мы хотим справа иметь антипротон, то ему должны сопут­ствовать еще три протона (или других бариона).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6a. Электродинамика"

Книги похожие на "6a. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6a. Электродинамика"

Отзывы читателей о книге "6a. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.