» » » Ричард Фейнман - 6a. Электродинамика


Авторские права

Ричард Фейнман - 6a. Электродинамика

Здесь можно скачать бесплатно "Ричард Фейнман - 6a. Электродинамика" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
6a. Электродинамика
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "6a. Электродинамика"

Описание и краткое содержание "6a. Электродинамика" читать бесплатно онлайн.








Фиг. 24.14. Еще одна возмож­ная зависимость Еу от х.

компоненты. Такие поля называются «поперечными магнитны­ми» (сокращенно ТМ) типами волн. В прямоугольном волно­воде все типы обладают более высокой граничной частотой, чем описанный нами простой TE-тип. Поэтому всегда возможно (и так обычно делают) использовать такой волновод, в котором частота немного превышает граничную частоту этого наиниз­шего типа колебаний, но находится ниже граничных частот всех других типов. В таком волноводе распространяется волна толь­ко одного типа. В противном случае поведение волн услож­няется и его трудно контролировать.

§ 8. Другой способ рассмотрения волн в волноводе

Теперь я хочу по-другому объяснить вам, почему волновод так сильно ослабляет поля, частота которых ниже граничной частоты wс. Я хочу, чтобы вы получили более «физическое» пред­ставление о том, почему так резко меняется поведение волно­вода при низких и при высоких частотах. Для прямоугольного волновода это можно сделать, анализируя поля на языке отра­жений (или изображений) в стенках волновода. Такой подход годится, однако, только для прямоугольных волноводов; вот почему мы начали с математического анализа, который в прин­ципе годится для волноводов любой формы.

Для описанного нами типа колебаний вертикальные размеры (по у) не имели никакого значения, поэтому можно не обращать внимания на верх и низ волновода и представлять себе, что волновод в вертикальном направлении простирается бесконечно. Пусть он просто состоит из двух вертикальных пластин, удален­ных друг от друга на расстояние а.

Давайте возьмем в качестве источника полей вертикальный провод между пластинами; по нему течет ток, который меняется

Фиг. 24.15, Линейный источ­ник S0 между проводящими плоскими стенками W1 и W2 . Стенки можно заменить бесконеч­ной последовательностью изобра­жений источников.

с частотой w. Если бы волновод не имел стенок, то от такого про­вода расходились бы цилиндрические волны.

Представим, что стенки волновода сделаны из идеального про­водника. Тогда, в точности как в электростатике, условия на поверхности будут выполнены, если к полю провода мы доба­вим поле одного или нескольких правильно подобранных его изображений. Представление об изображениях работает в элек­тродинамике ничуть не хуже, чем в электростатике, при усло­вии, конечно, что мы учитываем запаздывание. Мы знаем, что это так, потому что мы много раз видели в зеркале изображение источника света. А зеркало — это и есть «идеальный» проводник для электромагнитных волн оптической частоты.

Рассечем наш волновод горизонтально, как показано на фиг. 24.15, где W1и W2 стенки волновода, a S0 источник (провод). Обозначим направление тока в проводе знаком плюс. Будь у волновода лишь одна стенка, скажем Wl, , ее можно было бы убрать, поместив изображение источника (с про­тивоположной полярностью) в точке S1 . Но при двух стенках по­явится также изображение Suв стенке W2; обозначим его S2. Этот источник также будет обладать своим изображением в W1; обозначим его S3 . Дальше, сами S1и S3изобразятся в W2 точками S4 и S6и т. д. И для нашей пары плоских проводников с источником посредине поле между проводниками совпадет с нолем, генерируемым бесконечной цепочкой источников на рас­стоянии а друг от друга. (Это на самом деле как раз то, что вы увидите, посмотрев на провод, расположенный посредине между двумя параллельными зеркалами.) Чтобы поля обращались в нуль на стенках, полярности токов в изображениях должны меняться от одного изображения к следующему. Иначе говоря, их фаза меняется на 180°. Поле волновода — это просто суперпозиция полей всей этой бесконечной совокупности ли­нейных источников.

Известно, что вблизи от источников поле очень напоминает статические поля. В гл. 7, § 5 (вып. 5) мы рассматривали статиче­ское поле сетки линейных источников и нашли, что оно похоже на поле заряженной пластины, если не считать членов ряда, убывающих по мере удаления от сетки экспоненциально. У нас средняя сила источников равна нулю, потому что у каждой пары соседних источников знаки противоположны. Любые поля, су­ществующие здесь, должны с расстоянием убывать экспоненци­ально. Вплотную к источнику мы в основном воспринимаем поле этого ближайшего источника; на больших расстояниях уже воздействует несколько источников, и их суммарное влия­ние дает нуль. Мы теперь понимаем, отчего волновод ниже граничной частоты дает экспоненциально убывающее поле. При низких частотах годится статическое приближение, и оно предсказывает быстрое ослабление полей с расстоя­нием.

Теперь зато возникает противоположный вопрос: отчего же в таком случае волны вообще распространяются? Теперь уже это выглядит таинственно! А причина-то в том, что при высоких частотах запаздывание полей может внести в фазу добавочные изменения, которые могут привести к тому, что поля источников с противоположной фазой будут усиливать, а не гасить друг друга. В гл. 29 (вып. 3) мы уже изучали как раз для этой задачи поля, создаваемые системой антенн или оптической ре­шеткой. Тогда мы обнару­жили, что соответствующее

расположение нескольких радиоантенн может привести к такой интерференционной

^ картине, что в одном направ­лении сигнал будет очень сильный, а в других сигна­лов вообще не будет.

Вернемся к фиг. 24.15

и посмотрим на поля на большом расстоянии от линии изображений источников.

Фиг. 24.16. Одна совокупность когерентных волн от вереницы

линейных источников.

Ф us. 24.17. Поле в волноводе можно рассматривать как на­ложение двух верениц плоских волн.

Поля будут велики лишь в некоторых направлениях, зависящих от частоты, именно в тех направлениях, в каких поля всех источни­ков попадают в фазу друг к другу и складываются. На заметном расстоянии от источников поле в этих специальных направле­ниях распространяется как плоские волны. Мы изобразили та­кую волну на фиг. 24.16, где сплошными линиями даны гребни волн, а штрихом — впадины. Направление волны должно быть таким, чтобы разность запаздываний от двух соседних источни­ков до гребня волны отвечала полупериоду колебания. Иными словами, разность между r2 и r0на рисунке равна половине дли­ны волны в пустом пространстве:

Тогда угол q дается условием

(24.33)

Имеется, конечно, и другая совокупность волн, бегущих вниз под симметричным углом по отношению к линии источников. А полное поле в волноводе (не слишком близко к источнику) является суперпозицией этих двух совокупностей волн (фиг. 24.17). Конечно, в действительности картина истинных полей совпадает с изображенной лишь в пространстве между стенками волновода.

В таких точках, как А к С, гребни двух волновых картин совпадут, и у поля будет максимум; в точках же наподобие В пики обеих волн направлены в отрицательную сторону, и поле обладает минимумом (наименьшим отрицательным значением). С течением времени поле в волноводе будет двигаться вдоль него. Длина волны будет равна lg расстоянию от A go С. Она свя­зана с q формулой

(24.34)

Подставляя (24.33) вместо q, получаем

(24.35)

что в точности совпадает с (24.19).

Теперь нам становится понятно, почему волны распростра­няются только выше граничной частоты wс. Если длина волн в пустом пространстве больше 2а, то не существует угла, под которым может появиться волна, показанная на фиг. 24.16. Необходимая для этого конструктивная интерференция возни­кает внезапно, едва X0 оказывается меньше 2а, или, что то же самое, когда w0=pс/а.

А если частота достаточно высока, то может появиться два

или больше возможных направления распространения волн.

2 В нашем случае это произойдет при l0 <2/3 а. Но вообще-то это может происходить и при l0<а. Эти добавочные волны отве­чают высшим типам волн, о которых мы говорили.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "6a. Электродинамика"

Книги похожие на "6a. Электродинамика" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 6a. Электродинамика"

Отзывы читателей о книге "6a. Электродинамика", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.