» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








Постоянная К характеризует данный переход. Если бы К была равна нулю, то эта пара уравнений попросту описывала бы наинизшее энергетическое состояние (с энергией U) каж­дого сверхпроводника. Но обе стороны связаны амплитудой К, выражающей возможность утечки из одной стороны в другую (это как раз известная нам по двухуровневым системам ампли­туда «переброса»). Если обе стороны одинаковы, то U1 будет равно U2, и я имею право их просто вычесть. Но теперь пред­положим, что мы подсоединили две сверхпроводящие области к двум полюсам батарейки, так что к переходу оказалась при­ложенной разность потенциалов V. Тогда U1-U2=qV. Для удобства я могу выбрать нуль энергии посредине между U1 и U2, и тогда уравнения обратятся в

Это стандартные уравнения двух связанных квантовомеханических состояний. На этот раз давайте проанализируем их по-иному. Сделаем подстановки:

где q1 и q2— фазы по обе стороны контакта, a r1и r2— плотно­сти электронов в этих двух точках. Вспомним, что на практике r1 и r2 почти точно совпадают друг с другом и равны r0 — нормальной плотности электронов в сверхпроводящем материале. Если вы теперь подставите эти формулы для y1 и y2 в (19.40) и приравняете вещественные части вещественным, а мни­мые — мнимым, то получится четверка уравнений (для крат­кости обозначено q2-q1=d):

Первая пара уравнений говорит, что r1=-r2 «Но,— ска­жете вы,— они ведь обе должны быть равны нулю, раз r1и r2 обе постоянны и равны r0». Не совсем. Эти уравнения описывают не все. Они говорят, какими были бы r1 и r2, если бы не было до­бавочных электрических сил за счет того, что нет баланса между электронной жидкостью и фоном положительных ионов. Они сообщают, как начали бы меняться плотности, и поэтому описывают тот ток, который начал бы течь. Этот ток, текущий от стороны 1 к стороне 2, был бы как раз равен r1(или -r2), или

Такой ток вскоре зарядил бы сторону 2, если можно было бы за­быть, что обе стороны соединены проводами с батареей. Однако он не зарядит область 2 (и не разрядит область 1), потому что возникнут токи, которые выровняют потенциал. В наши урав­нения эти токи от батареи не входят. Если бы их добавить, то r1 и r2 оставались бы фактически постоянными, а ток через переход определялся бы формулой (19.44).

Поскольку r1 и r2 действительно остаются постоянными и равными r0, давайте положим 2Kr0/h=J0и напишем

J=J0sind. (19.45)

Тогда J0, подобно К, есть число, характеризующее данный переход.

Другая пара уравнений (19.43) дает нам q1и q2. Нас инте­ресует разность d=q2-q1, которую мы хотим подставить в (19.45); из уравнений же мы имеем

Это значит, что можно написать

где d0 — значение d при t=0. He забывайте также, что q — это заряд пары, q=2qe. В уравнениях (19.45) и (19.47) содер­жится важный результат — общая теория переходов Джозефсона.

Так что же из них следует? Сначала приложим постоянное напряжение. Если приложить постоянное напряжение V0, то аргумент синуса примет вид d0+(q/h)V0t. Поскольку h/q—чис­ло маленькое (по сравнению с обычными напряжениями и вре­менами), то синус будет колебаться довольно быстро и в итоге никакой ток не пойдет. (Практически, поскольку температура не равна нулю, небольшой ток все же будет из-за проводимости «нормальных» электронов.) С другой стороны, если напряже­ние на переходе равно нулю, то ток может пойти! Если нет на­пряжения, то ток может равняться любой величине между +J0 и -J0 (в зависимости от того, каково значение d0). Но попробуй­те приложить напряжение — и ток обратится в нуль. Это стран­ное поведение недавно наблюдалось экспериментально.

Ток можно получить и другим способом: кроме постоянного напряжения — приложить еще и высокую частоту. Пусть

где v<<V. Тогда

Но при малых Dx

Разложив по этому правилу sind, я получу

Первый член в среднем дает нуль, но второй в нуль не об­ращается, если

Значит, если частота переменного напряжения равна (q/h)V0, то через контакт пойдет ток. Шапиро сообщил, что он наб­людал такой резонансный эффект.

Если вы просмотрите работы на эту тему, то заметите, что в них формула для тока часто записывается в виде

где интеграл берется по пути, ведущему через переход. Причина здесь в том, что если переход находится в поле векторного по­тенциала, то фаза амплитуды переброса видоизменяется так, как было объяснено вначале [уравнение (19.1)]. Если вы всюду включите такой сдвиг фазы, то получите нужные формулы.

Наконец, я хотел бы описать очень эффектный и интерес­ный опыт по интерференции токов, проходящих через два пере­хода, который был недавно проделан. Мы привыкли встречаться в квантовой механике с интерференцией амплитуд от двух ще­лей. Сейчас мы будем иметь дело с интерференцией двух токов, текущих через два перехода между сверхпроводниками. Она вызывается различием в фазах, с которыми сливаются токи, прошедшие по двум разным путям. На фиг. 19.7 показано па­раллельное соединение двух переходов а и b между сверхпровод­никами.

Фиг. 19.7. Два па­раллельных перехода Джозефсона.

Концы сверхпроводников Р и Q подключены к прибо­рам, которыми мы измеряем ток. Внешний ток Jполн будет суммой токов через каждый из переходов. Пусть Jaи Jbэто то­ки через переходы, и пусть их фазы будут dаи db. Разность фаз волновых функций в точках Р и Q должна быть одинаковой, по какому бы пути вы ни пошли. На том пути, который следует через переход а, разность фаз между Р и Q равна dаплюс кри­волинейный интеграл от векторного потенциала вдоль верхнего пути:

Почему? Потому что фаза q связана с А уравнением (19.26). Если вы это уравнение проинтегрируете вдоль какого-то пути, то левая часть даст изменение фазы, которое тем самым как раз окажется пропорциональным криволинейному интегралу от А, что и написано. Изменение фазы по нижнему пути может быть записано подобным же образом:

Эти величины должны быть равны; если я их вычту, то получу, что разность дельт должна быть равна контурному интегралу от А по замкнутому пути

Здесь интеграл берется по замкнутому контуру Г (см. фиг. 19.7), проходящему через оба перехода. Интеграл от А это магнитный поток Ф через контур. Итак, две дельты оказываются отличаю­щимися на 2qe/h, умноженное на магнитный поток Ф, который проходит между двумя ветвями схемы:

Изменяя магнитное поле в схеме, я смогу контролировать эту разность фаз. Я ее прилажу так, чтобы посмотреть, проявится ли в полном токе, текущем сквозь оба перехода, интерференция между его частями. Полный ток равен сумме Jaи Jb. Для удоб­ства я приму

Тогда

Мы не знаем, каково значение d0, и природа здесь может, в зависимости от обстоятельств, вытворять все, что ей заблаго­рассудится. В частности, d0 может зависеть от прилагаемого к переходам внешнего напряжения. Но что бы мы ни делали, sind0 не окажется больше единицы. Значит, предельно сильный ток для каждого данного Ф дается формулой

Этот предельный ток меняется, смотря по тому, каково Ф, и сам достигает максимума всякий раз, когда

где n — целое число. Иными словами, ток достигает своего максимума, когда зацепляющийся за схему поток принимает те самые квантованные значения, которые мы получили в уравнении (19.30)!

Ток Джозефсона через двойной переход недавно был изме­рен как функция магнитного поля в области между ветвями. Результаты приведены на фиг. 19.8.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.