» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








Но это то же самое, что и

так что мы обнаруживаем, что

или что

Прелестный результат. Он означает, что если среднее значе­ние х меняется со временем, то перемещение центра тяжести равно среднему импульсу, деленному на массу т. Точно как в классической механике.

Другой пример. Какова скорость изменения среднего им­пульса состояния? Правила игры прежние. Оператор этой ско­рости равен

Опять все можно подсчитать в x-представлении. Напомним, что р^ обращается в d/dx, а это означает, что вам придется дифферен­цировать потенциальную энергию V), но только во втором слагаемом. В конце концов остается только один член, и вы получаете

или

Опять классический результат. Справа стоит сила, так что мы вывели закон Ньютона! Но помните — это законы для операто­ров, которые дают средние величины. Они не описывают в де­талях, что происходит внутри атома.

Существенное отличие квантовой механики в том, что р^х^ не равно х^р^. Они отличаются на самую малость — на малень­кое число h. Но все поразительные сложности интерференции волн и тому подобного проистекают из того небольшого факта, что х^р^-р^х^ не совсем нуль.

История этой идеи тоже интересна. С разницей в несколько месяцев в 1926 г. Гейзенберг и Шредингер независимо оты­скали правильные законы, описывающие атомную механику. Шредингер изобрел свою волновую функцию y(х)и нашел уравнение для нее, а Гейзенберг обнаружил, что природу можно было бы описывать и классическими уравнениями, лишь бы хр-рх было равно h/i, чего можно было добиться, определив их с по­мощью особого вида матриц. На нашем теперешнем языке он пользовался энергетическим представлением и его матрицами. И то и другое — и матричная алгебра Гейзенберга и дифферен­циальное уравнение Шредингера — объясняли атом водорода. Несколькими месяцами позднее Шредингер смог показать, что обе теории эквивалентны — мы только что это видели. Но две разные математические формы квантовой механики были от­крыты независимо.

* Во многих книжках для используется один и тот же символ: физика в них одна и та же, да и удобнее все время обходиться без новых букв. А из контекста всегда ясно, что имеется в виду.

* Уравнение (18.38) не означает, что |a>=x|y> [ср. (18.35)]. Сокра­щать на <х| нельзя, потому что множитель х перед <x|y> для каждого состояния <х| имеет свое значение. Это — значение координаты электрона в состоянии |х> [см. (18.40)].

* Можно выразить это и иначе. Какую бы функцию (т. е. состояние) вы ни выбрали, ее всегда можно представить в виде линейной комбина­ции базисных состояний, являющихся состояниями с определенной энер­гией. Поскольку в этой комбинации присутствует примесь состояний с более высокими энергиями, то средняя энергия окажется выше энергии основного состояния.

* Элемент объема мы обозначаем d Объем. Он попросту равен dxdydz, а интеграл берется от -Ґ до +Ґ по всем трем координатам.

Глава 19

УРАВНЕНИЕ ШРЕДИНГЕРА В КЛАССИЧЕСКОМ КОНТЕКСТЕ.

СЕМИНАР ПО СВЕРХПРОВОДИМОСТИ

§ 1. Уравнение Шредингера в магнитном поле

§ 2. Уравнение непрерывности для вероятностей

§ 3. Два рода импульсов

§ 4. Смысл волновой функции

§ 5. Сверхпроводимость

§ 6. Явление Мейсснера

& 7. Квантование потока

§ 8. Динамика сверхпроводимости

§ 9. Переходы Джозефсона

§ 1. Уравнение Шредингера в магнитном поле

Эту лекцию я читаю вам для развлечения. Захотелось посмотреть, что получится, если начать читать в немного ином стиле. В курс она не входит, и не думайте, что это попытка обучить вас в последний час чему-то новому. Я скорее воображаю, будто провожу семинар или будто делаю отчет об исследованиях перед более подготовленной аудиторией, перед людь­ми, которые в квантовой механике уже многое понимают. Основное различие между семинаром и регулярной лекцией в том, что на семинаре докладчик не приводит все стадии, всю алгебру выкладок. Он просто говорит: «Если вы проделаете то-то и то-то, то получится вот что», а в детали не входит. Вот и в этой лекции будут только высказываться идеи и приводиться результаты расчетов. А вы должны понимать, что вовсе не обязательно во всем немедленно и до конца разбираться, надо только верить, что если проделать все выкладки, то все так и полу­чится.

Но это не все. Главное — что об этом мне хочется говорить. Это такая свежая, актуальная, современная тема, что вполне законно вы­нести ее на семинар. Тема эта — классический аспект уравнения Шредингера, явление сверх­проводимости.

Обычно та волновая функция, которая появ­ляется в уравнении Шредингера, относится только к одной или к двум частицам. И сама волновая функция классическим смыслом не обладает в отличие от электрического поля, или векторного потенциала, или других подобных вещей. Правда, волновая функция отдельной частицы — это «поле» в том смысле, что она есть функция положения, но классического значения она, вообще говоря, не имеет. Тем не менее бывают иногда обстоятельства, в которых квантовомеханическая волновая функция действи­тельно имеет классическое значение, именно их я и хочу кос­нуться. Своеобразие квантовомеханического поведения веще­ства в мелких масштабах обычно не дает себя чувствовать в круп­номасштабных явлениях, если не считать стандартных выводов о том, что оно вызывает к жизни законы Ньютона, законы так называемой классической механики. Но существуют порой об­стоятельства, в которых особенности квантовой механики могут особым образом сказаться в крупномасштабных явлениях.

При низких температурах, когда энергия системы очень-очень сильно убывает, вместо прежнего громадного количества состояний в игру включается только очень-очень малое количе­ство состояний — тех, которые расположены неподалеку от основного. При таких условиях квантовомеханический характер этого основного состояния может проявиться на макроскопиче­ском уровне. Вот целью этой лекции и будет продемонстрировать связь между квантовой механикой и крупномасштабными эф­фектами — не обычное обсуждение пути, по которому кванто­вая механика в среднем воспроизводится ньютоновой механи­кой, а специальный случай, когда квантовая механика вызывает свои собственные, характерные для нее эффекты в крупных, «макроскопических» размерах.

Начну с того, что напомню вам кое-какие свойства уравне­ния Шредингера. Я хочу с помощью уравнения Шредингера описать поведение частицы в магнитном поле, потому что явле­ния сверхпроводимости связаны с магнитными полями. Внеш­нее магнитное поле описывается векторным потенциалом, и вопрос состоит в том, каковы законы квантовой механики в поле векторного потенциала. Принцип, определяющий квантовомеханическое поведение частицы в поле векторного потенциала, очень прост.

Фиг. 19.1. Амплитуда перехода из а в b по пути r пропорциональна

Амплитуда того, что частица при наличии поля пе­рейдет по некоторому пути из одного места в другое (фиг. 19.1), равна амплитуде того, что она прошла бы по этому пути без поля, умноженной на экспоненту от криволинейного интеграла от век­торного потенциала, умноженного в свою очередь на элект­рический заряд и деленного на постоянную Планка [см. гл. 15, § 2 (вып. 6)]:

Это исходное утверждение квантовой механики.

И вот в отсутствие векторного потенциала уравнение Шре­дингера для заряженной частицы (нерелятивистской, без спина) имеет вид

где j — электрический потенциал, так что qj — потен­циальная энергия. А уравнение (19.1) равнозначно утвержде­нию, что в магнитном поле градиенты в гамильтониане нужно

каждый раз заменять на градиент минус (iq/h)А, так что (19.2) пре­вращается в

Это и есть уравнение Шредингера для частицы с зарядом q (нерелятивистской, без спина), движущейся в электромагнитном поле А, j.

Чтобы стало ясно, что оно правильно, я хочу проиллюстриро­вать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси x на расстоянии b друг от друга, и существует амплитуда —К того, что электрон перепрыгнет в отсутствие поля от одного атома к другому. Тогда, согласно уравнению (19.1), если имеется вектор-потен­циал Аx(х, t) в x-направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на exp[(iq/h)Axb] экспоненту с показателем, равным произведению iq/h на векторный потенциал, проинтегрирован­ный от одного атома до другого. Для простоты мы будем писать (q/h) Axєf(x), поскольку Ах, вообще говоря, зависит от х. Если обозначить через С(х)єСnамплитуду того, что электрон обнаружится возле атома n, расположенного в точке х, то скорость изменения этой амплитуды будет даваться уравнением


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.