» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








Тогда получится

что очень похоже на то, что мы имели для <x>ср.

При желании можно продолжить ту же игру, которой мы предавались с <x>ср. Во-первых, этот интеграл можно записать так:

Теперь вы должны узнать в этом уравнении разложение амплитуды <y|b> — разложение по базисным состояниям с определенным импульсом. Из (18.45) следует, что состояние |b> определяется в импульсном представлении уравнением

Иначе говоря, теперь можно писать

причем

где оператор р^ определяется на языке p-представления урав­нением (18.47).

[И опять при желании можно показать, что матричная запись р^ такова:

и что

Выводится это так же. как и для х.

Теперь возникает интересный вопрос. Мы можем написать <р>ср так, как мы это сделали в (18.45) и (18.48); смысл опе­ратора р^ в импульсном представлении нам тоже известен. Но как истолковать р^ в координатном представлении? Это бывает нужно знать, если у нас есть волновая функция y (x)и мы со­бираемся вычислить ее средний импульс. Позвольте более четко пояснить, что имеется в виду. Если мы начнем с того, что за­дадим <p>cp уравнением (18.48), то это уравнение можно бу­дет разложить по p-представлению и вернуться к (18.45). Если нам задано p-представление состояния, а именно амплитуда <p|y> как алгебраическая функция импульса p, то из (18.47) можно получить <p|b> и продолжить вычисление интеграла. Вопрос теперь в следующем: а что делать, если нам задано описание состояния в x-представлении, а именно волновая функ­ция y (x)=<x|y>?

Ну что ж, начнем раскладывать (18.48) в x-представлении.

Напишем

Но теперь надо знать другое: как выглядит состояние |b> в x-представлении. Если мы узнаем это, мы сможем взять ин­теграл. Итак, наша задача — найти функцию b (x)=<x|b>. Ее можно найти следующим образом. Мы видели в гл. 14, § 3, как <р|b> связано с <x|b>. Согласно уравнению (14.24),

Если нам известно <р|b>, то, решив это уравнение, мы найдем <x|b>. Но результат, конечно, следовало бы как-то выразить через y (x)=<x|y>, потому что считается, что именно эта ве­личина нам известна. Будем теперь исходить из (18.47) и, опять применив (14.24), напишем

Интеграл берется по х, поэтому р можно внести под интеграл

Теперь сравним это с (18.53). Может быть, вы подумали, что <x|b> равно py(x)? Нет, напрасно! Волновая функция <х|b>=b(x) может зависеть только от х, но не от р. В этом-то вся трудность.

К счастью, кто-то заметил, что интеграл в (18.55) мо­жно проинтегрировать по частям. Производная e-ipx/hпо х равна (-i/h)pe-ipx/h, поэтому интеграл (18.55) это все равно, что

Если это проинтегрировать по частям, оно превратится в

Пока речь идет только о связанных состояниях, y(x) стремится к нулю при х®±Ґ, скобка равна нулю и мы имеем

А вот теперь сравним этот результат с (18.53). Вы видите, что

Все необходимое, чтобы взять интеграл в (18.52), у нас уже есть. Окончательный ответ таков:

Мы узнали, как выглядит (18.48) в координатном представлении. Перед нами начинает постепенно вырисовываться интересная картина. Когда мы задали вопрос о средней энергии состояния |y>, то ответ был таков:

То же самое в координатном мире записывается так:

Здесь — алгебраический оператор, который действует на функцию от х.

Когда мы задали вопрос о среднем значении х, то тоже обнаружили, что ответ имеет вид

В координатном мире соответствующие уравнения таковы:

Когда мы задали вопрос о среднем значении р, то ответ оказался

В координатном мире эквивалентные уравнения имели бы вид

Во всех наших трех примерах мы исходили из состояния |y> и создавали новое (гипотетическое) состояние с помощью квантовомеханического оператора. В координатном представле­нии мы генерируем соответствующую волновую функцию, дей­ствуя на волновую функцию y (x) алгебраическим оператором. Можно говорить о взаимнооднозначном соответствии (для одно­мерных задач) между

В этом перечне мы ввели новый символ для алгебраического оператора (h/i)д/дx:

и поставили под значок х, чтобы напомнить, что имеем пока дело с одной только x-компонентой импульса.

Результат этот легко обобщается на три измерения. Для других компонент импульса

При желании можно даже говорить об операторе вектора импульса и писать

где ех, еy и еz — единичные векторы в трех направлениях. Можно записать это и еще изящнее:

Окончательный вывод наш таков: по крайней мере для некоторых квантовомеханических операторов существуют соот­ветствующие им алгебраические операторы в координатном пред­ставлении. Все, что мы до сих пор вывели (с учетом трехмер­ности мира), подытожено в табл. 18.1. Каждый оператор может быть представлен в двух равноценных видах:

либо

либо

Теперь мы дадим несколько иллюстраций применения этих идей. Для начала выявим связь между.

Если применить дважды, получим

Это означает, что можно написать равенство

Или, в векторных обозначениях,

(Члены в алгебраическом операторе, над которыми нет символа оператора ^, означают простое умножение.) Это уравнение очень приятно, потому что его легко запомнить, если вы еще не забыли курса классической физики. Хорошо известно, что энергия (не­релятивистская) состоит из кинетической энергии р2/2m плюс потенциальная, а у нас тоже оператор полной энергии. Этот результат произвел на некоторых деятелей столь силь­ное впечатление, что они начали стремиться во что бы то ни стало вбить студенту в голову всю классическую физику, прежде чем приступить к квантовой. (Мы думаем иначе!) Параллели очень часто обманчивы. Если у вас есть операторы, то важен порядок различных множителей, а в классическом уравнении он безраз­личен.

Таблица 18.1 · АЛГЕБРАИЧЕСКИЕ ОПЕРАТОРЫ В КООРДИ­НАТНОМ ПРЕДСТАВЛЕНИИ

В гл. 15 мы определили оператор р^хчерез оператор смещения D^x[см. формулу (15.27)]:

где d — малое смещение. Мы должны показать, что это экви­валентно нашему новому определению. В соответствии с тем, что мы только что доказали, это уравнение должно означать то же самое, что и

Но в правой части стоит просто разложение y (x+d) в ряд Тэйлора, а y (x+d)— то, что получится, если сместить состояние влево на б (или сдвинуть на столько же вправо систему коорди­нат). Оба наши определения р^ согласуются!

Воспользуемся этим, чтобы доказать еще кое-что. Пусть у нас в какой-то сложной системе имеется множество частиц, которым мы присвоим номера 1, 2, 3, ... . (Для простоты остано­вимся на одномерном случае.) Волновая функция, описывающая состояние, является функцией всех координат х1: х2, x3,... . Запишем ее в виде y (x1, х2, х3, ...). Сдвинем теперь систему (вле­во) на d. Новая волновая функция

может быть записана так:

Согласно уравнению (18.65), оператор импульса состояния |y> (назовем его полным импульсом) равняется


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.