» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








Объединенные состояния суть | а, mа; b, mb>, их всего (2ja+1)(2jb+1). Какие же состояния с полным спином / мы обнаружим?

Полная z-компонента М момента количества движения рав­няется mа+mb, и все состояния можно перечислить, опираясь на величину М [как в (16.42)]. Наибольшое М является единст­венным; оно отвечает значениям ma=jaи mb=jbи равно по­просту ja+jb. Это означает, что наибольший полный спин J также равен сумме jа+jb:

J=Ммакс=ja+jb.

Следующему значению М, меньшему чем Ммакс на единицу, будут соответствовать два состояния (либо mа, либо mbменьше своих максимальных значений на единицу). Из них должно быть образовано одно состояние, принадлежащее совокупности с J=ja+jb, и останется еще одно, которое будет принадлежать новой совокупности с J=ja+jb-1. Следующее значение М (третье сверху) можно составить тремя путями (из ma=ja 2, mb=jb, из ma=ja-1, mb=jb-1 и из ma=ja, mb=jb -2). Два из них принадлежат к уже начавшим составляться груп­пам; третье говорит нам, что надо включить в рассмотрение и со­стояния с J=ja+jb-2. Такие рассуждения будут продол­жаться до тех пор, пока уже нельзя будет, меняя то одно, то дру­гое т, получать новые состояния.

Пусть из jаи jbменьшим является jb(а если они одинаковы, возьмите любое из них); тогда понадобятся только 2jb значений полного спина J, идущих единичными шагами от jа+jb вниз к jа-jb. Иначе говоря, когда объединяются два объекта со спинами jа и jb, то полный момент количества движения J их системы может равняться одному из значений:

(Написав | ja-jb|вместо ja-jb, мы можем избежать напо­минания о том, что jaіjb.)

Для каждого из этих значений J имеется 2J+1 состояний с различными значениями М; М меняется от +J до -J. Каждое из них образовано из линейных комбинаций исходных состояний | а, mа; b, mb> с соответствующими коэффициентами — коэффициентами Клебша — Гордона для каждого отдельного члена. Можно считать, что эти коэффициенты дают «количест­во» состояния | ja, ma; jb, mb>, проявляющегося в состоянии

Таблица 16.7 ·ОБЪЕДИНЕНИЕ ДВУХ ЧАСТИЦ СО СПИНОМ 1 (ja=1, jb=1)

I /, My. Так что каждый из коэффициентов Клебша — Гордона обладает, если угодно, шестью индексами, указывающими его положение в формулах типа приведенных в табл. 16.3 и 16.6. Иначе говоря, обозначая, скажем, эти коэффициенты С (J, М; ja, ma; jb, mb), можно выразить равенство во второй строчке табл. 16.6 так:

Мы не будем здесь подсчитывать коэффициенты для других частных случаев. Но вы обнаружите такие таблицы во мно­гих книжках. Попробуйте сами подсчитать другой случай, например объединение двух объектов со спином 1. Мы же про­сто привели в табл. 16.7 окончательный результат.

Эти законы объединения моментов количества движения имеют очень важное значение в физике частиц, их приложениям поистине нет конца. К сожалению, у нас нет сейчас больше вре­мени на другие примеры.

Добавление 1. Вывод матрицы поворота

Для тех, кто хотел бы разобраться в этом поподробнее, мы вычислим сейчас общую матрицу поворота для системы со спи­ном (полным моментом количества движения) j. В расчете об­щего случая на самом деле большой необходимости нет; важно понять идею, а все результаты вы сможете найти в таблицах, которые приводятся во многих книжках. Но, с другой стороны, вы зашли уже так далеко, что у вас, естественно, может возник­нуть желание убедиться, что вы и впрямь в состоянии понять даже столь сложные формулы квантовой механики, как (16.35).

Расширим рассуждения § 4 на систему со спином j, которую будем считать составленной из 2/ объектов со спином 1/2. Состоя­ние с m=j имело бы вид | + + + . . . +> (с j плюсами). Для m=j-1 было бы 2j членов типа | + + . . . + + ->, | + + . . . +- +>и т. д. Рассмотрим общий случай, когда имеет­ся r плюсов и s минусов, причем r+s=2j. При повороте вокруг оси r от каждого из r плюсов появится множитель e+ij/2. В итоге фаза изменится на i(r/2-s/2)j. Мы видим, что

m=(r-s)/2 . (16.59)

Как и в случае J=3/2, каждое состояние с определенным т должно быть суммой всех состояний с одними и теми же r и s, взятых со знаком плюс, т. е. состояний, отвечающих всевозмож­ным перестановкам с r плюсами и s минусами. Мы считаем, что вам известно, что всего таких сочетаний есть (r+s)!/r!s!. Чтобы нормировать каждое состояние, надо эту сумму разделить на корень квадратный из этого числа. Можно написать

где

Введем еще новые обозначения, они нам помогут в счете. Ну а поскольку мы уж определили состояния при помощи (16.60), то два числа r и s определяют состояние ничуть не хуже, чем j и m. Мы легче проследим за выкладками, если обозначим

где [см.. (16.61)]

r = j+m, s = j-т.

Далее, (16.60) мы запишем, пользуясь специальным обозна­чением

Обратите внимание, что показатель степени в общем множителе мы изменили на +1/2. Это оттого, что внутри фигурных скобок в (16.60) стоит как раз N=(r+s)!/r!s! слагаемых. Если сопоста­вить (16.63) с (16.60), то ясно, что

— это краткая запись выражения

где N — количество различных слагаемых в скобках. Эти обо­значения удобны тем, что каждый раз при повороте все знаки плюс вносят один и тот же множитель, так что в итоге он полу­чается в r-й степени. Точно так же все знаки минус дадут некоторый множитель в s-й степени, в каком бы порядке эти знаки ни стояли.

Теперь положим, что мы повернули нашу систему вокруг оси у на угол q. Нас интересует. Оператор Ry(q), дей­ствуя на каждый |+>, дает

где С=cosq/2 и S=sin q/2. Когда же Ry(q) действует на | ->, это приводит к

Так что искомое выражение равно

Теперь надо возвысить биномы в степень и перемножить. По­явятся члены со всеми степенями |+ у от нуля до r+s. Посмот­рим, какие члены дадут r'-ю степень |+ ). Они всегда будут сопровождаться множителем типа |->s', где s'=2j-r'. Соберем их вместе. Получится сумма членов типа |+>r' |->s' с численными коэффициентами Аr' , куда входят коэффициенты биномиального разложения вместе с множителями С и S. Урав­нение (16.65) тогда будет выглядеть так:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.