» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








при всех k>1. А это, конечно, устроить легко. Выберите какое угодно а1. Затем все прочие коэффициенты образуйте с помощью формулы

Пользуясь ею, вы получите а2, а3, а4 и т. д., и каждая пара будет, конечно, удовлетворять (17.21). Мы получим ряд для g(r), удовлетворяющий (17.17). С его помощью мы напишем y — решение уравнения Шредингера. Обратите внимание, что решения зависят от того, какова предполагаемая энергия (через a), но для каждого значения e получается свой ряд. Решение-то у нас есть, но что оно представляет физически? Понятие об этом мы получим, поглядев, что происходит вдалеке от протона — при больших r. Там основное значение приобре­тают наивысшие степени членов ряда, т. е. нам надо посмотреть, что бывает при больших k. Когда k>>1, то уравнение (17.22) приближенно совпадает с :

а это означает, что

Но это как раз коэффициенты разложения в ряд е+2ar. Функ­ция g оказывается быстро растущей экспонентой. Даже после умножения на е-arполучающаяся функция f(r) [см. (17.14)] будет при больших r меняться как еar. Мы нашли математиче­ское решение, но оно не является физическим. Оно представляет случай, когда электрону менее всего вероятно очутиться вблизи протона! Чаще всего он вам повстречается на очень больших расстояниях р. А волновая функция для связанного электрона должна при больших r стремиться к нулю.

Придется подумать, нельзя ли как-нибудь обмануть решение. Оказывается, можно. Посмотрите! Если бы, по счастью, оказа­лось, что a=1/n, где n — любое целое число, то уравнение (17.22) привело бы к an+1=0. И все высшие члены обратились бы тоже в нуль. Вышел бы не бесконечный ряд, а конечный многочлен. Любой многочлен растет медленнее, чем еar, поэтому множитель е-a наверняка забьет его при больших r, и функ­ция f при больших r будет стремиться к нулю. Единственные решения для связанных состояний это те, для которых a=1/n, где n=1, 2, 3, 4 и т. д.

Оглядываясь на уравнение (17.16), мы видим, что у сфериче­ски симметричного волнового уравнения могут существовать решения для связанных состояний лишь при энергиях

Допустимы только те энергии, которые составляют именно такую часть ридберга ЕR=me4/2h2, т. е. энергия n-го уровня равна

Кстати, ничего мистического в отрицательных энергиях нет. Они отрицательны просто потому, что когда мы решили писать V= -е2/r, то тем самым в качестве нуля энергии выбрали энергию электрона, расположенного вдалеке от протона. Когда он ближе, то его энергия меньше, т. е. ниже нуля. Энергия ни­же всего (самая отрицательная) при n=1и возрастает к нулю с ростом п.

Еще до открытия квантовой механики экспериментальное изучение спектра водорода показало, что уровни энергии описы­ваются формулой (17.24), где ЕR, как это следует из измерений, равно примерно 13,6 зв. Затем Бор придумал модель, которая привела к тому же уравнению (17.24) и предсказала, что ERдолжно равняться me4/2h2. Первым большим успехом теории Шредингера явилось то, что она смогла воспроизвести этот результат прямо из основного уравнения движения электрона.

Теперь, когда мы рассчитали наш первый атом, давайте рас­смотрим свойства полученного нами решения. Объединим все выделившиеся по дороге факторы и выпишем окончательный вид решения:

где

и

Пока нас интересует главным образом относительная вероят­ность обнаружить электрон в том или ином месте, можно в ка­честве а1выбирать любое число. Возьмем, например, а1=1. (Обычно выбирают а1так, чтобы волновая функция была «нор­мирована», т. е. чтобы полная вероятность обнаружить элек­трон где бы то ни было в атоме была равна единице. Мы в этом сейчас не нуждаемся.)

В низшем энергетическом состоянии n=1 и

Если атом водорода находится в своем основном (наиболее низ­ком энергетическом) состоянии, то амплитуда того, что элект­рон будет обнаружен в каком-то месте, экспоненциально падает с расстоянием от протона. Вероятнее всего встретить его вплотную близ протона. Характерное расстояние, на котором он встречается, составляет около одного r, или одного боровского радиуса rB.

Подстановка n=2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна

Волновая функция для следующего уровня равна

Эти три волновые функции начерчены на фиг. 17.2.

Фиг. 17.2. Волновые функции трех первых состоя­ний атома водорода с l=0. Масштабы выбраны так, чтобы полные вероятности совпадали.

Общая тен­денция уже видна. Все волновые функции при больших r, поко­лебавшись несколько раз, приближаются к нулю. И действи­тельно, число «изгибов» у ynкак раз равно n, или, если угодно, число пересечений оси абсцисс — число нулей — равно n-1.

§ 3. Состояния с угловой зависимостью

Мы нашли, что в состояниях, описываемых волновой функ­цией yn(r), амплитуда вероятности обнаружить электрон сфе­рически симметрична; она зависит только от r — расстояния до протона. Момент количества движения таких состояний равен нулю. Теперь займемся состояниями, у которых какой-то момент количества движения имеется.

Можно было бы, конечно, просто исследовать чисто матема­тическую задачу отыскания функций от r, q и j, удовлетворяю­щих дифференциальному уравнению (17.7), добавив только физическое условие, что единственно приемлемые для нас функции — это такие, которые при больших r стремятся к нулю. Так почти всегда и поступают. Но мы попробуем несколько сократить наш путь и воспользоваться тем, что мы уже знаем, именно тем, что нам известно, как амплитуды зависят от про­странственных углов.

Атом водорода в том или ином состоянии — это частица с определенным «спином» j — квантовым числом полного мо­мента количества движения. Часть этого спина возникает от собственного спина электрона, другая — от движения электрона. Поскольку каждая из этих частей действует (в очень хорошем приближении) независимо, то мы по-прежнему будем игнориро­вать спиновую часть и учтем только «орбитальный» момент. Впрочем, это орбитальное движение в точности подобно спину. Скажем, если орбитальное квантовое число есть l, то z-компонента момента количества движения может быть l, l-1, l-2, . . ., -l. (Мы, как обычно, измеряем все в единицах h.) Кроме того, по-прежнему годятся все наши матрицы поворота и прочие известные свойства. (Начиная с этого места, мы действительно начнем пренебрегать спином электрона; говоря о «мо­менте количества движения», мы будем иметь в виду только орбитальную его часть.)

Поскольку поле с потенциалом V, в котором движется элект­рон, зависит только от r, а не от q и не от j, то гамильтониан симметричен относительно поворотов. Отсюда следует, что и момент количества движения и все его проекции сохраняются. Это не есть особое свойство кулонова потенциала e2/r; оно спра­ведливо при движении в любом «центральном поле» — поле, зависящем только от r.

Представим себе некоторое возможное состояние электрона; внутренняя угловая структура этого состояния будет опреде­ляться квантовым числом l. В зависимости от «ориентации» полного момента количества движения относительно оси z его проекция т на ось z может равняться одному из 2l+1 чисел между +l и -l. Пусть, например, m=1. С какой амплитудой электрон окажется на оси z на расстоянии r от начала? С нуле­вой. Электрон на оси z не может иметь какого-либо орбиталь­ного момента относительно этой оси. Но пусть тогда m=0. Вот это другое дело; теперь уже может появиться не равная нулю амплитуда того, что электрон окажется на оси z на таком-то расстоянии от протона. Обозначим эту амплитуду Fl(r). Это — амплитуда того, что электрон будет обнаружен на расстоянии r по оси z, когда атом находится в состоянии | l, 0>, т. е. в состоянии с орбитальным моментом l и его z-компонентой m=0. А если нам известно Fl(r), то известно все. Теперь уже в лю­бом состоянии |l, m>мы можем узнать амплитуду ylm (r) того, что электрон обнаружится в произвольном месте атома. Как мы это узнаем? А вот следите. Пусть у нас есть атом в состоянии | l, m>. Какова амплитуда того, что электрон обнару­жится под углом q, j и на расстоянии r от начала? Проведите новую ось z, скажем z', под этим углом (фиг. 17.3) и задайте вопрос: какова амплитуда того, что электрон окажется на новой оси z на расстоянии r?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.