» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








состояние | 0, 0>.

Теперь мы можем посмотреть, что происходит, когда мы прое­цируем общее состояние | j, m>на представление, относящееся к повернутой системе осей. Прежде всего известно, что j — это число, которое характеризует систему, поэтому оно не меняется. При повороте осей мы получим просто смесь различных значе­ний т для одного и того же j. В общем случае появится амплиту­да того, что система в повернутой системе координат окажется в состоянии | j, m'>, где m' — новая z-компонента момента ко­личества движения. Значит, нам нужны матричные элементы <j, m' |R|j, m>всевозможных поворотов. Мы уже знаем, что бывает, если поворот делается на угол j вокруг оси z. Новое состояние — это попросту старое, умноженное на eimj, у него по-прежнему то же значение т. Это можно записать так:

или, если вам больше нравится,

(где dm,m' равно единице при m' = m, и нулю в прочих случаях).

При поворотах вокруг любой другой оси возникает переме­шивание различных m-состояний. Можно было бы, конечно, попытаться подсчитать матричные элементы для произвольных поворотов, описываемых углами Эйлера b,a и g. Но будет легче, если мы вспомним, что самый общий такой поворот может быть составлен из трех поворотов Rz(g), Ry(a), Rz(b); так что если мы знаем матричные элементы для поворотов вокруг оси y, то уже располагаем всем необходимым.

Как же нам найти матрицу поворота для поворота частицы со спином j на угол q вокруг оси у? Опираясь на основные за­коны (и на то, что уже было), это сделать нелегко. Мы так посту­пали со спином 1/2: вывели все, что нужно, пользуясь довольно сложными соображениями симметрии. Для спина 1 мы это про­делали уже иначе: рассмотрели частный случай, когда система со спином 1 складывается из двух систем со спином 1/2. Если вы последуете за нами и признаете правильным тот факт, что в общем случае ответы зависят только от спина j, а не от того, как скреплены между собой разные части системы со спином j, то мы сможем обобщить рассуждения для спина 1 на произвольный спин. Мы сможем, например, соорудить искусственную систему со спином 3/2 из трех объектов со спином 1/2. Мы сможем даже избежать всяких усложнений, вообразив, что все они суть различные частицы — скажем, протон, электрон и мюон. Преобразуя каждый объект со спином 1/2, мы увидим, что происходит со всей системой — надо только вспомнить, что для комбинированного состояния все амплитуды перемножаются. Давайте посмотрим, как все это проходит.

Допустим, мы расположили все три объекта со спином 1/2 спинами вверх; обозначим такое состояние |+++>. Если мы взглянем на него из системы координат, повернутой относительно оси z на угол j, то каждый плюс останется плюсом, но умно­жится на еij/2. Таких множителей у нас тройка, так что

Ясно, что состояние |+++> — это как раз то, что мы назы­ваем состоянием m=+3/2, или состоянием |3/2, + 3/2>.

Если мы затем повернем эту систему вокруг оси у, то у каж­дого из объектов со спином 1/2 появится некоторая амплиту­да стать плюсом или стать минусом, так что вся система станет теперь смесью восьми возможных комбинаций |+++>,

|++->, |+-+>, |-++>, |+-->, |-+->,

|--+> или |--->. Ясно, однако, что их можно раз­бить на четыре группы, чтобы каждая соответствовала своему значению m. Прежде всего мы имеем |+++>, для которого m=3/2. Затем имеется тройка состояний |++->, |+-+> и |-++> — каждое с двумя плюсами и одним минусом. Поскольку каждый из объектов со спином 1/2 имеет равные шансы стать после поворота минусом, то каждая из этих трех комбинаций должна войти на равных паях. Поэто­му возьмем комбинацию

где множитель 1/Ц3 поставлен для нормировки. Если мы по­вернем это состояние вокруг оси z, то получим множитель eij/2 для каждого плюса и e-if/2для каждого минуса. Каждое слагаемое в (16.27) умножится на eij/2, и общий множитель еij/2 мы вынесем за скобки. Такое состояние соответствует нашему представлению о состоянии с m=+1/2; мы приходим к выводу, что

Точно так же можно написать

что соответствует состоянию с m=-1/2. Заметьте, что мы берем только симметричные сочетания, у нас нет комбинаций, куда входят слагаемые со знаком минус. Они отвечали бы со­стояниям с таким же т, но с иным j. Это аналогично случаю спина 1, где (1/Ц2){|+->+|-+>} было состоянием | 1,0>, а (1/Ц2){|+->-|-+>} было состоянием | 0,0>. Наконец, мы имеем

Эта четверка состояний сведена в табл. 16.1.

Таблица 16.1 · СВОДКА СОСТОЯНИЙ

Все, что нам теперь нужно сделать, это взять каждое состоя­ние, повернуть его вокруг оси у и посмотреть, сколько новых состояний оно создаст — пользуясь известной нам матрицей поворота для частицы спина 1/2. Можно поступать так же, как мы это делали в случае спина 1 [см. гл. 10, § 6 (вып. 8)]. (Только алгебры будет побольше.) Мы будем строго следовать идеям гл. 10 (вып. 8), так что подробных объяснений давать не будем. Состояния в системе S будут обозначаться

и т. д.; T-системой будет считаться система, повернутая вокруг оси у системы S на угол q. Состояния в T-системе будут обозна­чаться |3/2, + 3/2, Т>, |3/2, + 1/2, Т>и т. д. Ясно, что | 3/2, + 3/2, Т>это то же самое, что | +' + ' + ' > (штрихи всегда относятся к T-системе). Точно так же |3/2, +1/2, Т>будет равняться

и т. д. Каждое |+'>-состояние в T-системе получается как из |+>-, так и из |->-состояний в системе S с помощью матрич­ных элементов из табл. 10.4 (вып. 8, стр. 267).

Если мы имеем тройку частиц со спином 1/2, то (10.47) надо заменить на

Пользуясь обозначениями табл. 10.4, получим вместо (10.48) уравнение

Это уже дает нам некоторые из наших матричных элементов <jT| iS>. Чтобы получить выражение для 3/2, +1/2, S> мы дол­жны исходить из преобразования состояния с двумя плюсами и одним минусом. К примеру,

Добавляя два сходных выражения для + — +> и | — + +> и деля на ]/3, найдем

Продолжая этот процесс, мы найдем все элементы <|iS> матрицы преобразования. Они приведены в табл. 16.2. Первый столбец получается из (16.32), второй — из (16.34). Последние два столбца были вычислены таким же способом. Теперь допустим, что T-система была повернута относительно S-системы на угол q вокруг ее оси у. Тогда а, b, с и d равны [см. (10.54), вып. 8]: а=d=cosq/2, с=-b=sinq/2. Под­ставляя это в табл. 16.2, получаем формулы, похожие на вторую половину табл. 15.2, но на этот раз для системы со спином 3/2.

Таблица 16.2 · МАТРИЦА ПОВОРОТА ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2

Коэффициенты а, b, с и d объясняются в табл. 10.4.

Рассуждения, которые мы только что провели, были обобще­ны на систему с произвольным спином j. Состояния |j, m> можно составить из 2j частиц со спином 1/2 у каждой. (Из них j+m будут в ] + >-состоянии, а j-m будут в |->-состоянии.) Проводится суммирование по всем возможным способам, какими их можно сочетать, а затем состояния нормируются умноже­нием на надлежащую постоянную. Если у вас есть способности к математике, то вы сможете доказать, что получается следую­щий результат:

где k пробегает все те значения, при которых под знаком факториала получаются неотрицательные величины.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.