» » » » Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)


Авторские права

Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)

Здесь можно скачать бесплатно "Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)" в формате fb2, epub, txt, doc, pdf. Жанр: Юмористические стихи. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Льюис Кэрролл: Досуги математические и не только (ЛП)
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Льюис Кэрролл: Досуги математические и не только (ЛП)"

Описание и краткое содержание "Льюис Кэрролл: Досуги математические и не только (ЛП)" читать бесплатно онлайн.



В сборник, составленный переводчиком, включены стихотворения и рассказы всемирно известного автора, а также примеры его арифметических штудий.  






«Пусть m и n — это числа, определённые как показано ниже.

(1) Разделить число, обозначающее год, на 4, на 7 и на 19, а соответствующие остатки от деления нацело обозначить как a, b и c.

(2) Разделить 19с + m на 30 и остаток обозначить через d.

(3) Разделить 2a + 4b + 6d + n на 7 и остаток обозначить через e.

(4) Тогда пасхальное полнолуние состоится через d дней после 21 марта, и Пасха выпадет на (22 + d + e)-е число марта либо на (d + e – 9)-й день апреля, за исключением случая, когда расчёт даст 29 для d и 6 для e (как получается для 1981-го года), — в этом случае Пасха приходится на 19-е апреля вместо 26-го; и за исключением случая, когда расчёт даст 28 для d, 6 для e и при этом c > 10 (как получается для 1954-го года) — тогда Пасха приходится на 18-е апреля вместо 25-го, и таким образом в этих двух случаях Пасха наступает на неделю раньше того срока, который получается согласно настоящему правилу.

Юлианский календарь свободен от подобных исключений, в григорианском же они появляются, правда очень редко (cм. прим. [23] — А. М.)

Остаётся только установить значения m и n для конкретного периода. В юлианском календаре имеем m = 15, n = 6. В григорианском календаре


Так, для года 1908 имеем m = 24, n = 5; следовательно, a = 0, b = 4, c = 8, d = 26, а e = 2 и пасхальное воскресенье приходится на 19-е апреля. После 4200-го года вид настоящего правила должен быть слегка видоизменён. <…>

Можно избегнуть необходимости запоминать значения m и n, если учесть, что если N — данный год, а {N/x} обозначает целую часть отношения N к x, то m есть остаток от деления 15 + ξ на 30, а n есть остаток от деления 6 + η на 7; здесь для юлианского календаря ξ = 0, η = 0, тогда как для григорианского календаря

ξ = {N/100} – {N/400} – {N/300}, η = {N/100} – {N/400} – 2.

Если мы примем эти значения для m и n и если положим для a, b, c их значения, а именно,

a = N – 4{N/4}, b = N – 7{N/7}, c = N – 19{N/19},

то наше правило примет следующий вид. Разделить 19N – {N/19} +15 + ξ на 30 и обозначить остаток как d. Затем разделить 6(N + d + 1) – {N/19} + η на 7 и обозначить остаток как e. Тогда пасхальное полнолуние выпадет на d-й день после 21-го марта, а Пасха, соответственно, придётся на (22 + d + e)-й день марта либо на (d + e – 9)-е число апреля; исключение составляют случаи, когда расчёт даёт 29 для d и 6 для e или же 28 для d и 6 для e с тем, что c > 10, когда Пасха приходится на (d + e – 16)-й день апреля.

Так, если N = 1899, делим 19(1899) – 99 + 15 + (18 – 4 – 6) на 30, что даёт d = 5; продолжаем делением 6(1899 + 5 + 1) – 474 + (18 – 4 – 2) на 7, что даёт e = 6; а потому Пасха придётся на 2-е апреля».

15

То есть, остаток при делении 4325 на семь равняется 6. В следующих примерах этого пункта он равняется соответственно 4 и 2. Далее — аналогично.

16

Дефектом числа (либо фигуры) называется количественное отличие данного числа (либо параметров данной фигуры) от некоторого определённого числа (либо определённых параметров фигур данного класса; так, дефектом треугольника называется отличие суммы углов данного треугольника от 180°).

17

От английского слова remainder ‘остаток’.

18

Датой первого дня григорианского календаря в странах, которые ввели у себя новый календарный стиль раньше других (Италия, Испания, Португалия, Польша и Франция) стало 15 октября 1582 года (для прочих стран см. Климишин И. А. Календарь и хронология. М., «Наука», 1990, с, 455, либо Куликов С. С. Нить времён: малая энциклопедия календаря с заметками на полях газет. М., «Наука», 1991, с. 133).

19

Что получение календарной даты такого «загадочно»-подвижного праздника, как Пасха, путём изложенных в вышеперечисленных пунктах простых выкладок не есть фокус и не содержит ничего надуманного, можно видеть уже из цитированного отрывка книги Роуза Болла, словесно излагающего исходные формулы Гаусса. Например, Роуз Болл тоже начинается с предварительного нахождения остатков от деления нужного года на 4, на 7 и на 19. Читатель получит вполне наглядное видение всей задачи, «стоит только» (как указывает и сам Уильям Роуз Болл в предисловии к первой, арифметической, главе своей книги) «перевести все операции на строгий математический язык». Проделаем же здесь эту процедуру: приведём формулы Гаусса к Доджсонову виду. Но сначала ещё раз разъясним их физический смысл. Как постановил в 325-м году Никейский собор, первый день Пасхи (его дата и обозначается через P) должен совпадать с воскресеньем, непосредственно следующим за днём пасхального полнолуния, а в качестве последнего следует принимать то, которое наступает либо 21 марта (день весеннего равноденствия в год собора), либо непосредственно после него; иными словами, P = V + D, где V — это дата пасхального полнолуния, равная 21 + d (т. е. d есть промежуток между 21 марта и пасхальным полнолунием), D — это количество дней, через которое после пасхального полнолуния наступает Пасха, то есть разность между датами воскресенья S, наступающего после 25 февраля, и пасхального полнолуния V; так как это количество не менее 1 и не более 7, следует записать: D = |(S – V)/7|, или, поскольку остаток 0 может быть замещён 7, D = |(SV + 6)/7| + 1. Далее, S = 2a + 4b + n – 6, в каковом выражении буквы a, b, n означают то же, что у Роуза Болла (и см. ниже). Подставив выражения для S и V в формулу для D, получим D = |(2a + 4b + n – 6)/7| + 1, или D = e + 1.

Итак, число P, на которое приходится Пасха, определяется следующими выражениями:

P = 22 + (d + e) марта                                       (1)

или, если P превысит 31,

P = (d + e) – 9 апреля.                                       (2)

Входящие в эти формулы величины таковы: d = |(19c + m)/30|, e = |(2a + 4bd + n)/7|.

Таковы формулы Гаусса (за опущенными подробностями мы отсылаем читателя к статье базельского профессора Г. Кинкелина 1870-го года, тогда же перепечатанной по-русски в «Математическом сборнике Московского математического общества», т. V, с. 73—92 — перевёл и дополнил Н. Сонин; доказательство формул Гаусса просто и вместе с тем строго впервые было дано именно в этой статье). Здесь a в обозначениях Роуза Болла — это 4-Rem данного года у Доджсона; b и c соответствуют, аналогично, 7-Rem и 19-Rem. У Доджсона тоже есть величина a (из таблицы); чтобы не путать её с болловой (то есть, с 4-Rem), обозначим её здесь как ac (кэрроллова).

Рассмотрим выражение, раскрывающее величину d; добавив в числитель сократимые величин, кратные 30, получим

d = |(19c + m)/30| =  |(19c – 30c + m – 30)/30| = | – (11c + ac)/30| = ∆,

где ∆ есть тот дефект числа 11c + ac от наибольшего кратного 30, содержащего в себе это число, о котором Доджсон говорит в пункте 3) параграфа 3 своей работы. (В самом деле, этот дефект есть величина 30w – 11сac, где w — некоторое число, выбираемое таким образом, чтобы значение всего выражения по модулю было меньше 30; это и приводит нас к вышеуказанному виду для ∆.) Отметив, кроме того, что n из таблицы в книге Роуза Болла соответствует h из Доджсоновой таблицы, запишем:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Льюис Кэрролл: Досуги математические и не только (ЛП)"

Книги похожие на "Льюис Кэрролл: Досуги математические и не только (ЛП)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Льюис Кэрролл

Льюис Кэрролл - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)"

Отзывы читателей о книге "Льюис Кэрролл: Досуги математические и не только (ЛП)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.