Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Льюис Кэрролл: Досуги математические и не только (ЛП)"
Описание и краткое содержание "Льюис Кэрролл: Досуги математические и не только (ЛП)" читать бесплатно онлайн.
В сборник, составленный переводчиком, включены стихотворения и рассказы всемирно известного автора, а также примеры его арифметических штудий.
Франсин Ф. Абель, исследовательница и издательница математических бумаг Чарльза Лютвиджа Доджсона, полагает, что указанный пассаж был исключён автором из печатного варианта настоящей работы, ориентированной на школьное обучение, как выходящий за рамки элементарного уровня.
6
Этот параграф также представляет собой расширенный вариант статьи под названием «Сокращённое деление в столбик. Короткий способ деления данного числа делителем вида h10n ± k, в котором по крайней мере одно из двух чисел, h и k, больше 1», написанной 21 декабря 1897 года. Нижеследующий текст предваряется в статье таким абзацем: «Моя предыдущая статья по этому вопросу, появившаяся в «Nature» за 14 октября 1897 года, касается только случая, когда h = 1 и k = 1. Статья вызвала появление от других корреспондентов «Nature» нескольких интересных писем, с которыми редактор любезно позволил мне ознакомиться. Одно, от мистера Альфреда Сэнга, ссылается на «Stenarithmie» монсеньора Л. Ришара как на содержащее моё Правило деления на 11. Правильно, книга монсеньора Ришара, не попадавшаяся мне ранее, содержит такое правило, однако автор упустил из виду, что проверочный критерий, предоставляемый данным Способом ради уверенности в конечном результате, это совершенно чёткий и определённый критерий. Автор говорит: «La dernière difference, ou cette difference augmontée de 1, égalera le chiffre de gauche du nombre proposé <Последняя разность, либо таковая, увеличенная на единицу, равняется левой цифре заявленного числа>». Столь неопределённый критерий, как этот, был бы, разумеется, бесполезен. Однако та «difference <разность>», о которой он говорит, на деле является предпоследней; самая последняя всегда (как я показал в своей предыдущей работе) будет равняться нулю. Другой корреспондент, мистер Отто Зонне, утверждает, что мои Правила — как для 9, так и для 11, — можно отыскать в школьном учебнике мистера Адольфа Штеена, изданном в Копегагене в 1847 году. Так что, боюсь, мне придётся снять свои притязания, начиная от звания первооткрывателя этих правил и кончая славой первого, опубликовавшего сие по-английски».
Статья появилась в «Nature» (т. 57 от 20 января 1898 г., с. 269—271) спустя неделю после смерти автора, последовавшей 14 января. Она является предпоследней работой, отданной Доджсоном в печать.
7
Очевидно, поскольку это начальная буква слова ten ‘десять’.
8
Далее текст до конца этого абзаца и следующий за ним абзац появляются только в составе «Curiosa Mаthematica, часть III»; в статье, отданной в печать, они отсутствовали. Очевидно, автор счёл желательным описать «ход рассуждения» подробнее, чем это было сделано в статье. Мы, со своей стороны, кое-где в примечаниях добавили ещё уточнений.
9
Аналогично текст с этого места и до конца абзаца.
10
Опубликовано в «Knowledge», т. VI, 15 (от 4 июля 1884 г.) в качестве ответа на письмо некоего Эскью, опубликованного там же 30 мая.
11
Опубликовано в «Nature», т. 35, 517 (от 31 марта 1887 года). Данная статья — единственная из трёх, появившихся в данном издании, что была подписана «Льюис Кэрролл».
12
См., однако, примечание [18].
13
Таким образом, данный Способ есть приноровление к нашей способности вычислять в уме общей формулы для нахождения дня недели Д, которую можно записать в виде (см., например, Куликов С. Нить времён: Малая энциклопедия календаря. М., «Наука». С. 177—182):
Д = |(Г + М + Ч)/7|
(прямые скобки обозначают остаток от деления нацело). Здесь Г = | (J + {J/4})/7| есть годовой член, известный с VIII века как конкурента, или солнечная эпакта (на Руси — вруцелетная буква); его и составляет сумма (опять же по модулю семь) Доджсоновых члена «сотни» и члена «годы»; М — это месячный член из Доджсоновой таблицы, аналогичный старинной, из похожей таблицы, величине, называемой солнечный регуляр, а Ч — заданное число месяца. Выражение в фигурных скобках обозначает целую часть от деления.
Работа Доджсона по упрощению расчётов в уме дня недели для любой даты в следующем веке была интенсивно продолжена. На Западе дальнейшая попытка упрощения вызвала к жизни так называемое «правило Судного дня» Джона Хортона Конвея (статья «Завтра — новый день после Судного дня» в журнале «Eureka», октябрь 1973 года, затем два издания (второе — 1982 год в четырёх томах) книги «Winning Waysfor Your Mathematical Plays» с соавторами). Приведём краткое описание этого Правила. Оно заключается в предварительном нахождении двух величин, а именно:
1) Судный день года. Это порядковый номер дня недели, на который приходится в данном году 28 или 29 февраля. Известно, что в 1900 году последний день февраля был средой. Тогда, поскольку 365 = 1 mod 7, то каждый обычный год прибавляет 1 к Судному дню, а каждый високосный прибавляет 2 дня. Следовательно, Судный день для года 1900 + Y есть день 1900 + Y + {Y/4}. Высчитаем Судный день 1929 года (то есть, на какой день недели приходится в этом году 28 февраля): 1900 + 29 + {29/4} = 3 + 29 + 7 = 39 = 4 mod 7, т. е. четверг.
2) Судный день месяца. Правила Конвея тут таковы: а) для января — это 31/32-е числа, а для февраля — 28/29-е соответственно для простого и високосного годов; б) для чётных месяцев вроде апреля и июня число Судного дня равно порядковому номеру этого месяца; в) для «длинных» нечётных месяцев (т. е. для месяцев, у которых тридцать один день) число Судного дня есть порядковый номер месяца плюс 4; г) и для «коротких» нечётных месяцев (по тридцати дней) число Судного дня есть порядковый номер месяца минус 4. Таким образом, Конвей принимает Доджсонову таблицу:
3) Вычисление. Оно заключается в суммировании номера дня недели Судного дня года и взятой по модулю 7 разницы между числом Судного дня месяца и заданным числом. Найдём, например, на какой день недели приходится 7 декабря 1941 года: а) число Судного дня для декабря — двенадцатое, поэтому разница составит 7 – 12 = – 5 дней, или 2 mod 7; б) Судный день 1941 года есть день 3 + 41 + 10 = 54 = 5 mod 7. Поэтому 7 декабря 1941 года будет воскресеньем (2 + 5 = 7 → 0).
Для ускорения расчётов — чтобы не искать в уме, чему равны большие двузначные числа по модулю семь — Конвей предлагает некоторые хитрости, опять же подсказанные Доджсоном. Известно, например, что каждые двенадцать (дюжину) лет Судный день года сдвигается вперёд на один день, поскольку 12 + {12/4} = 12 + 3 = 15 = 1 mod 7. Поэтому если нам нужен 1941 год, замечаем, что 41 = 3 12 + 5, а {5/4} = 1, поэтому Судный день 1941 года есть день 3 + 3 + 5 + 1 = 12, откуда легко видеть, что это есть 5 mod 7.
Для других столетий требуется учесть напоминание Доджсона по учёту високосных годов среди годов с двумя нулями (так называемое солнечное уравнение). В своей модифицированной версии Конвей предлагает следующую таблицу для годов нашей эры (новый стиль):
Тогда Судный день для 1811 года находится суммированием 1800 + 11 + 4 = 5 + 11 + 2 = 4 mod 7.
14
Названная книга Роуза Болла и поныне чрезвычайно популярна. Существует даже её перевод на русский язык (Болл У., Коксетер Г. Математические эссе и развлечения. М., «Мир», 1986). Однако и на русском языке, и в западных переизданиях эта некогда весьма пёстрая книга теперь существует в уменьшенной наполовину, если не на две трети, редакции, идущей от десятого прижизненного издания, в дальнейшем редактируемого известным математиком Г. Коксетером (так, указанный русский перевод сделан с 12-го коксетеровского издания!). То место, на которое ссылается Доджсон, ныне в книге отсутствует. Приведём соответствующий отрывок по четвёртому авторскому изданию.
«Пусть m и n — это числа, определённые как показано ниже.
(1) Разделить число, обозначающее год, на 4, на 7 и на 19, а соответствующие остатки от деления нацело обозначить как a, b и c.
(2) Разделить 19с + m на 30 и остаток обозначить через d.
(3) Разделить 2a + 4b + 6d + n на 7 и остаток обозначить через e.
(4) Тогда пасхальное полнолуние состоится через d дней после 21 марта, и Пасха выпадет на (22 + d + e)-е число марта либо на (d + e – 9)-й день апреля, за исключением случая, когда расчёт даст 29 для d и 6 для e (как получается для 1981-го года), — в этом случае Пасха приходится на 19-е апреля вместо 26-го; и за исключением случая, когда расчёт даст 28 для d, 6 для e и при этом c > 10 (как получается для 1954-го года) — тогда Пасха приходится на 18-е апреля вместо 25-го, и таким образом в этих двух случаях Пасха наступает на неделю раньше того срока, который получается согласно настоящему правилу.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Льюис Кэрролл: Досуги математические и не только (ЛП)"
Книги похожие на "Льюис Кэрролл: Досуги математические и не только (ЛП)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)"
Отзывы читателей о книге "Льюис Кэрролл: Досуги математические и не только (ЛП)", комментарии и мнения людей о произведении.