Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Льюис Кэрролл: Досуги математические и не только (ЛП)"
Описание и краткое содержание "Льюис Кэрролл: Досуги математические и не только (ЛП)" читать бесплатно онлайн.
В сборник, составленный переводчиком, включены стихотворения и рассказы всемирно известного автора, а также примеры его арифметических штудий.
Примечания
1
Нижеследующий способ был первоначально описан Доджсоном в письме «Редактору „The Educational Times“». Опубликовано в т. XXXII (1 ноября 1879 г.), с. 307—308 названного издания.
«Сэр, если следующий краткий способ совершать умножение в столбик окажется нов, то я надеюсь, что вы сочтёте его заслуживающим опубликования.
Допустим, нам нужно умножить 56248 на 3726. Весь пример мы записываем в обычном виде, а именно:
Затем мы выписываем верхнюю строку задом наперёд с нижнего краю отдельной полоски бумаги, а над цифрой разряда единиц ставим метку как ориентир для глаза; этой полоской бумаги мы покрываем верхнюю строку нашего примера, совмещая по вертикали помеченную цифру с разрядом единиц нижней строки, — вот так:
Затем берём произведение тех цифр, что расположились по вертикали (в нашем случае это 8 и 6); оно равняется 48; мы записываем его разряд единиц (в нашем случае это 8) прямо под помеченной цифрой, а 4 «оставляем в уме» — вот так:
Затем мы сдвигаем нашу полоску на одну позицию влево:
Затем складываем цифру, оставшуюся в уме, с произведением тех цифр, которые расположились по вертикали, и записываем результат как ранее. Ход рассуждения тут таков: «4 плюс 24 будет 28, плюс 16 будет 44; 4 пишем, 4 в уме».
Затем вновь сдвигаем нашу полоску и действуем как ранее; ход рассуждения при этом таков: «4 плюс 12 будет 16, плюс 8 будет 24, плюс 56 будет 80; 0 пишем, 8 в уме».
Затем мы снова сдвигаем нашу полоску и так далее; когда достигнут последний шаг, наш пример принимает вот такой вид, с числом 5 в уме:
Следовательно, ход рассуждения на последнем шаге таков: «5 плюс 15 будет 20; записываем». Затем убираем нашу полоску, и перед нами следующий результат:
Такой же способ пригоден и при перемножении десятичных дробей; нам потребуется лишь не забывать совмещать цифру с меткой на нашей полоске бумаги по вертикали с тем десятичным разрядом, на который переносится следующее действие. Например, если нам нужно перемножить 0,63624 и 0,25873, и если, с целью иметь ответ с точностью до трёх знаков, мы пожелаем перенести действие на четвёртый разряд, то наш пример запишется так:
Тогда мы выписываем число 426360 на отдельной полоске бумаги и располагаем его так, чтобы помеченная цифра совпала по вертикали с четвёртым десятичным разрядом ответа — вот так:
Ход рассуждения на первом шаге будет таков: «0 плюс 48 будет 48, плюс 15 будет 63, плюс 12 будет 75; 5 пишем, 7 в уме».
Затем сдвигаем нашу полоску бумаги влево и действуем как ранее; на последнем шаге наш пример принимает следующий вид, с числом 1 в уме:
Следовательно, ход рассуждения на последнем шаге таков: «1 плюс 0 будет 1; записываем». Удаляем нашу полоску бумаги получаем результат:
Следовательно, ответ с точностью до третьего знака будет 0,164. Изложенный способ, как мне кажется, не только сэкономит место и время, но избавит от ошибок по невнимательности, связанных с выписыванием всех промежуточных рядов цифр, необходимых при старом способе, а также от постоянной опасности утерять нужное место, пока глаз носится наискось от одной цифры до другой, находящейся несколькими рядами ниже.
Ваш покорный слуга,
Чарльз Л. Доджсон,
член Колледжа и преподаватель математики
в Крайст Чёрч, Оксфорд».
2
На шестом этапе у нас появляется ряд из трёх произведений пар цифр, располагающихся вертикально: 5 × 9 = 45, 7 × 1 = 7 и 4 × 8 = 32. Складываем разряды единиц: 5 + 7 + 2 = 14, четыре пишем, один в уме; складываем десятки: 5 + 3 = 8.
3
Этот параграф был напечатан отдельной статёй в журнале «Nature», т. LVI (от 14 октября 1897 г.), с. 565—566, под названием «Короткий способ деления данного числа на 9 и 11». Нижеследующему тексту был предпослан вступительный абзац: «Я был бы благодарен, позволь Вы мне, посредством Вашей колонки, сообщить — главным образом математикам, но в особенности тем, кто занимается преподаванием математики — два новых правила, которые приводят к такому сбережению времени и труда, что, на мой взгляд, обязаны систематически изучаться в школах».
4
Здесь, лишь в третьем выпуске серии «Curiosa Mathematica», впервые появляется в авторском тексте слово «curious», которое, в отличие от латинского заимствования «curiosa», означает не то, что возбуждает пытливый интерес, но предмет всего лишь (праздного) любопытства. Однако и в этом, третьем, выпуске такие предметы представляют собой лишь редкие вкрапления в основной текст, который никак не рассматривался автором в качестве собрания курьёзов.
5
В указанной статье для журнала «Nature» вместо этого примера Доджсоном дан другой; предваряемая фраза слегка изменена, вместо двух заключительных абзацев — один и иной. «Вот, для примера, целиком должное решение при делении некоторого данного числа из семнадцати цифр на 999 и на 1001:
Но такие делители не относятся к повсеместно используемым, и для целей школьного обучения пока не будет иметь смысла выходить за пределы правил деления на 9 и на 11. Чарльз Л. Доджсон. К. Ч., Оксфорд».
Существуют также гранки ещё одной работы, дословно совпадающей с данным параграфом настоящего фрагмента «Curiosa Mathematica, часть III», имеющей тот же заголовок, как и статья в журнале «Nature», но без первого и заключительного абзацев последней. Вместо этого, заключительного, абзаца гранки имеют следующее продолжение.
«Тот же самый принцип приложим к любому числу, соседствующему с кратным 10-ти, при условии что мы сможем выявить, не прибегая к делению, требуемый Остаток.
Например, 41 есть множитель числа 99999, так что мы можем найти «остаток-41», предварительно найдя «остаток-99999», а затем разделив его на 41. Затем мы можем продолжать в соответствии с «правилом-11», за исключением того, что каждую цифру в отделе частного нижней строки мы, когда используем её как вычитаемое, должны брать учетверённой. Мы начинаем с разбиения данного числа на периоды по пять разрядов, затем складываем эти периоды вместе и, в случае если их сумма будет содержать более чем пять цифр, поступаем с ней таким же образом. Следовательно, будет лучше сделать подсчёт общей суммы, — предварительно, над данным числом, и только его конечный результат, который есть истинный Остаток, поместить снизу.
Примеры:
На этом гранки заканчиваются; поясним последние решения. В первом примере число 147705 — это сумма всех пятиразрядных периодов данного числа 327501876522096411585; число 23 есть остаток от деления числа 47706 (то есть 47705 + 1) на 41. Далее, в соответствии с вышесказанным, первый пример решается так. От 5 мы 23 отнять не можем, но можем отнять от 25; это «2» для разряда десятков при цифре 5 занимаем из 8. 25 - 23 = 2, пишем эту цифру под 8, от которой, за вычетом заимствованной двойки, остаётся только 6. Теперь в нижней строке мы вошли в раздел частного, поэтому от фактической цифры 6 верхней строки отнимаем не эту цифру 2, но 8 (то есть 2 × 4). Чтобы вычесть 8 из 6, занимаем для 6 значение разряда десятков у 5; тогда 16 – 8 = 8, и эту цифру 8 мы пишем под цифрой 5. Далее, 8 × 4 = 32, которое мы должны вычесть уже из 34 (то есть 5 – 1 = 4, что дает значение разряда единиц в 34, да по три заимствованные единицы у 1, у следующей 1 и у следующей за ними 4 для разряда десятков в 34). Далее — аналогично.
Франсин Ф. Абель, исследовательница и издательница математических бумаг Чарльза Лютвиджа Доджсона, полагает, что указанный пассаж был исключён автором из печатного варианта настоящей работы, ориентированной на школьное обучение, как выходящий за рамки элементарного уровня.
6
Этот параграф также представляет собой расширенный вариант статьи под названием «Сокращённое деление в столбик. Короткий способ деления данного числа делителем вида h10n ± k, в котором по крайней мере одно из двух чисел, h и k, больше 1», написанной 21 декабря 1897 года. Нижеследующий текст предваряется в статье таким абзацем: «Моя предыдущая статья по этому вопросу, появившаяся в «Nature» за 14 октября 1897 года, касается только случая, когда h = 1 и k = 1. Статья вызвала появление от других корреспондентов «Nature» нескольких интересных писем, с которыми редактор любезно позволил мне ознакомиться. Одно, от мистера Альфреда Сэнга, ссылается на «Stenarithmie» монсеньора Л. Ришара как на содержащее моё Правило деления на 11. Правильно, книга монсеньора Ришара, не попадавшаяся мне ранее, содержит такое правило, однако автор упустил из виду, что проверочный критерий, предоставляемый данным Способом ради уверенности в конечном результате, это совершенно чёткий и определённый критерий. Автор говорит: «La dernière difference, ou cette difference augmontée de 1, égalera le chiffre de gauche du nombre proposé <Последняя разность, либо таковая, увеличенная на единицу, равняется левой цифре заявленного числа>». Столь неопределённый критерий, как этот, был бы, разумеется, бесполезен. Однако та «difference <разность>», о которой он говорит, на деле является предпоследней; самая последняя всегда (как я показал в своей предыдущей работе) будет равняться нулю. Другой корреспондент, мистер Отто Зонне, утверждает, что мои Правила — как для 9, так и для 11, — можно отыскать в школьном учебнике мистера Адольфа Штеена, изданном в Копегагене в 1847 году. Так что, боюсь, мне придётся снять свои притязания, начиная от звания первооткрывателя этих правил и кончая славой первого, опубликовавшего сие по-английски».
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Льюис Кэрролл: Досуги математические и не только (ЛП)"
Книги похожие на "Льюис Кэрролл: Досуги математические и не только (ЛП)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Льюис Кэрролл - Льюис Кэрролл: Досуги математические и не только (ЛП)"
Отзывы читателей о книге "Льюис Кэрролл: Досуги математические и не только (ЛП)", комментарии и мнения людей о произведении.