» » » » Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики


Авторские права

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь можно скачать бесплатно "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство КоЛибри, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Рейтинг:
Название:
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Издательство:
КоЛибри
Жанр:
Год:
2012
ISBN:
978-5-389-01770-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Описание и краткое содержание "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать бесплатно онлайн.



Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!






Доказательство парадокса дней рождения похоже на те доказательства, что мы использовали в начале главы, изучая комбинации, выпадающие при бросании костей. На самом деле можно переформулировать парадокс дней рождения в виде следующего утверждения: если взять кость с 365 сторонами, то после 23 бросаний более вероятно, что одна и та же грань выпадет два раза, чем что такого не случится.


Шаг 1

Вероятность того, что у двух человек в группе окажется одна и та же дата рождения, равна единице минус вероятность того, что ни у каких двух людей в этой группе дни рождения не совпадут.


Шаг 2

Вероятность того, что в группе из двух человек их дни рождения не совпадут, равна 365/365 × 364/365. Так получается, потому что первый человек может родиться в любой день (365 возможностей из полного числа 365), а для второго остается любой из дней за исключением того, когда родился первый (364 возможности из полного числа 365). Для простоты не будем обращать внимания на лишний день в високосные годы.


Шаг 3

Вероятность того, что ни у кого в группе из трех человек даты рождения не попадут на один и тот же день, равна 365/365 × 364/365 × 363/365. В группе из четырех человек она оказывается равной 365/365 × 364/365 × 363/365 × 362/365 и т. д. Каждое следующее умножение делает результат все меньше и меньше. Когда в группе оказывается 23 человека, результат наконец пересекает отметку в 0,5 (точное значение равно 0,493).


Шаг 4

Если вероятность того, что ни у каких двух человек даты рождения не попадут на один и тот же день, меньше чем 0,5, то вероятность того, что по крайней мере у двух дни рождения совпадут, оказывается больше 0,5 (из шага 1). Так что в группе из 23 человек скорее окажется, что какие-то два человека родились в один и тот же день, чем наоборот.


Футбольные матчи предоставляют нам идеальную выборку, демонстрирующую, что реальные факты отвечают предсказаниям теории, потому что на поле всегда имеется 23 человека — две команды из и игроков и судья. Впрочем, рассмотрение с этой точки зрения финалов чемпионата мира показывает, что парадокс дней рождения работает чуть-чуть слишком хорошо. Вероятность, что у двух людей в группе из 23 человек окажется один и тот же день рождения, равна 0,507, что лишь едва больше 50 процентов. Однако же, судя по нашему списку, такое случилось в семи из десяти случаев (даже если исключить близнецов ван де Керкхоф), что дает 70 процентов[58].

Частично это следует отнести на счет закона больших чисел. Если бы я анализировал все матчи, сыгранные на чемпионатах мира, то можно было бы пребывать практически в полной уверенности, что результат окажется близким к 50,7 процента. Однако имеется и еще одна переменная. Равномерно ли распределены дни рождения футболистов на протяжении всего года? Возможно, нет. Исследования показывают, что для футболистов выше вероятность рождения в определенные времена года — вероятностное предпочтение оказывается у тех, кто родился сразу после даты, которая разделяет тех, кого записывают в школу на текущий год или на следующий. Дело в том, что родившиеся вскоре после этой даты будут самыми старшими в своем классе, а потому и самыми крупными, и будут показывать лучшие результаты в спорте. А если в распределение дат рождения вносится какая-то систематическая поправка, то можно ожидать более высокой вероятности совпадения дней рождения. Например, в наше время значительное число детей появляются на свет посредством кесарева сечения или искусственных родов. Это чаще случается по рабочим дням (поскольку сотрудники родильных отделений предпочитают отдыхать по выходным), и в результате оказывается, что дни рождения распределены по календарным датам не самым случайным образом. Если взять выборку из 23 людей, рожденных за один и тот же 12-месячный период, — скажем, детей в классе начальной школы, — то окажется, что вероятность одного и того же дня рождения у двух из них существенно превосходит 50,7 процента.

Если у вас под рукой нет группы из 23 человек, чтобы проверить это, займитесь своими ближайшими родственниками. При наличии четырех человек имеется 70-процентная вероятность, что у двух из них дни рождения придутся на один и тот же месяц. Всего лишь семь человек требуется, чтобы вероятным оказался факт рождения двоих из них в одну и ту же неделю, а в группе из 14 человек имеется пятидесятипроцентная вероятность, что два дня рождения отстоят друг от друга не более чем на один день. По мере роста группы вероятность растет на удивление быстро. В группе из 35 человек шансы на наличие совпадающего дня рождения составляют 85 процентов, а в группе из 60 — уже более 99 процентов.

А вот другой вопрос по поводу дней рождения, ответ на который настолько же противоречит интуиции, как и парадокс дней рождения: сколько людей должно быть в группе, чтобы с более чем 50-процентной вероятностью чей-нибудь день рождения совпадал с вашим? Это совсем не то же самое, что парадокс дней рождения, потому что вы задаете конкретную дату. При рассмотрении парадокса дней рождения нас не волнует, у кого именно и с кем совпадут дни рождения; надо найти всего лишь совпадающий день рождения. А наш новый вопрос можно переформулировать так: при заданной фиксированной дате сколько раз надо бросать нашу кость с 365 сторонами, чтобы выпала указанная дата? Ответ: 253 раза! Другими словами, придется собрать группу из 253 человек всего лишь для того, чтобы с вероятностью больше 50 процентов у кого-то из них день рождения совпал с вашим. Это число кажется абсурдно большим — заметим, что оно обитает заметно дальше середины отрезка между единицей и числом 365. И тем не менее именно случайность обеспечивает появление этих совпадений — такой размер группы необходим потому, что дни рождения людей не распределены регулярным образом. Среди этих 253 человек окажется много тех, у кого дни рождения совпадают (не совпадая при этом с вашим!), и все это тоже надо учесть.

Урок, извлекаемый из парадокса дней рождения, состоит в том, что совпадения происходят намного чаще, чем нам кажется. В немецкой лотерее «Lotto» у каждой комбинации чисел имеется один из 14 миллионов шанс на выигрыш. И однако же, в 1995 и в 1986 годах выиграла одна и та же комбинация: 15-25-27-30-42-48. Насколько невероятно такое совпадение? Не слишком, если разобраться. Между двумя появлениями одной и той же выигрышной комбинации лотерея разыгрывалась 3016 раз. Вычисление, позволяющее найти, сколько раз в розыгрыше должна появляться одна и та же комбинация, эквивалентно вычислению шанса на то, что найдутся совпадающие дни рождения в группе из 3016 человек, если всего имеется 14 миллионов возможных дней рождения. Искомая вероятность получается равной 0,28. Другими словами, имеется более чем 25-процентная вероятность того, что две выигрышные комбинации за этот период окажутся одинаковыми, так что произошедшее «совпадение» — не слишком нереалистичное событие.

Вот еще один случай. В 1985–1986 годах некая дама из Нью-Джерси дважды за четыре месяца стала победительницей лотереи, проводимой в ее родном штате. Повсюду говорили, что шансы такого исхода — один из 17 триллионов. Однако хотя вероятность купить выигрышный билет в каждой из двух лотерей и оба раза сорвать джекпот действительно равна единице на 17 триллионов, это не означает, что вероятность того, что кто-то где-то победит в двух лотереях, столь же мала. На самом деле такое вполне вероятно. Стивен Сэмюелс и Джордж Маккейб из Университета Пэрдью вычислили, что за период в семь лет вероятность двойного выигрыша в лотерею в Соединенных Штатах превосходит 50 процентов. Даже за период в четыре месяца имеется более одного шанса из 30 на появление двойного выигрыша в пределах страны. Перси Диаконис и Фредерик Мостеллер назвали это законом очень больших чисел: «При достаточно большой выборке может произойти любая сколь угодно несуразная вещь».

* * *

С математической точки зрения лотереи — без сомнения наихудший вариант из всех ставок во всех азартных играх, дозволяемых законом. Даже самый наискупой игровой автомат предлагает вам процент возврата около 85 процентов. А в лотерее «Мега-Миллионс» процент возврата равен примерно 50. Лотереи — занятие, не представляющее никакого риска для организаторов, поскольку призовые деньги — это просто перераспределенные деньги, уже полученные ими. Или, как в случае лотереи «Мега-Миллионс», это распределение половины полученного.

В редких случаях, однако, лотереи могут оказаться наилучшим способом получить хороший выигрыш. Такое происходит, когда из-за «переходящего» джекпота заявленный выигрыш становится больше, чем цена покупки всех возможных комбинаций чисел. В таких случаях вы можете быть уверены, что получите выигрышную комбинацию. Риск состоит только в том, что могут найтись люди, у которых уже есть выигрышная комбинация, — и тогда вам придется разделить главный выигрыш с ними. Впрочем, подход «купи-все-комбинации» подразумевает способность сделать именно это, что может оказаться делом нелегким как с теоретической, так и с логистической точки зрения.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Книги похожие на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алекс Беллос

Алекс Беллос - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Отзывы читателей о книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.