» » » » Роджер Пенроуз - Тени разума. В поисках науки о сознании


Авторские права

Роджер Пенроуз - Тени разума. В поисках науки о сознании

Здесь можно скачать бесплатно "Роджер Пенроуз - Тени разума. В поисках науки о сознании" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Институт компьютерных исследований. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Роджер Пенроуз - Тени разума. В поисках науки о сознании
Рейтинг:
Название:
Тени разума. В поисках науки о сознании
Издательство:
Институт компьютерных исследований
Жанр:
Год:
неизвестен
ISBN:
5-93972-457-4, 0-19-510646-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Тени разума. В поисках науки о сознании"

Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.



Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.

Для широкого круга читателей, интересующихся наукой.






1 → 01R, 00 → 40R, 01 → 01R, 10 → 21R, 11X, 20 → 31R, 21 → ∅0R, 30 → 551R, 31 → ∅0R, 40 → 40R, 41 → 51R, 50 → 40R, 51 → 61R, 60 → 40R, 61 → 71R, 70 → 40R, 71 → 81R, 80 → 40R, 81 → 91R, 90 → 100R, 91 → ∅0R, 100 → 111R, 101 → ∅0R, 110 → 121R, 111 → 120R, 120 → 131R, 121 → 130R, 130 → 141R, 131 → 140R, 140 → 151R, 141 → 10R, 150 → 00R, 151 → ∅0R, 160 → 170L, 161 → 161L, 170 → 170L, 171 → 181L, 180 → 170L, 181 → 191L, 190 → 170L, 191 → 201L, 200 → 170L, 201 → 211L, 210 → 170L, 211 → 221L, 220 → 220L, 221 → 231L, 230 → 220L, 231 → 241L, 240 → 220L, 241 → 251L, 250 → 220L, 251 → 261L, 260 → 220L, 261 → 271L, 270 → 321R, 271 → 281L, 280 → 330R, 281 → 291L, 290 → 330R, 291 → 301L, 300 → 330R, 301 → 311L, 310 → 330R, 311 → 110R, 320 → 340L, 321 → 321R, 330 → 350R, 331 → 331R, 340 → 360R, 341 → 340R, 350 → 371R, 351 → 350R, 360 → 360R, 361 → 381R, 370 → 370R, 371 → 391R, 380 → 360R, 381 → 401R, 390 → 370R, 391 → 411R, 400 → 360R, 401 → 421R, 410 → 370R, 411 → 431R, 420 → 360R, 421 → 441R, 430 → 370R, 431 → 451R, 440 → 360R, 441 → 461R, 450 → 370R, 451 → 471R, 460 → 480R, 461 → 461R, 470 → 490R, 471 → 471R, 480 → 480R, 481 → 490R, 490 → 481R, 491 → 501R, 500 → 481R, 501 → 511R, 510 → 481R, 511 → 521R, 520 → 481R, 521 → 531R, 530 → 541R, 531 → 531R, 540 → 160L, 541 → ∅0R, 550 → 531R.

Теперь мы готовы точно определить предельную длину предписания K, получаемого путем вышеприведенного построения, как функцию от длины алгоритма A. Сравним эту «длину» со «степенью сложности», определенной в §2.6 (в конце комментария к возражению Q8). Для некоторой конкретной машины Тьюринга Tm (например, той, что выполняет вычисление A) эта величина равна количеству знаков в двоичном представлении числа m. Для некоторого конкретного машинного действия Tm(n) (например, выполнения предписания K) эта величина равна количеству двоичных цифр в большем из чисел тип. Обозначим через α и κ количество двоичных цифр в a и k' соответственно, где

A = Ta и K = Tk'(= Ck).

Поскольку алгоритм A содержит, как минимум, 2N - 1 команд (учитывая, что первую команду мы исключили) и поскольку для каждой команды требуется, по крайней мере, три двоичные цифры, общее число двоичных цифр в номере его машины Тьюринга а непременно должно удовлетворять условию

α ≥ 6N - 6.

В вышеприведенном дополнительном списке команд для K есть 105 мест (справа от стрелок), где к имеющемуся там числу следует прибавить N. Все получаемые при этом числа не превышают N + 55, а потому их расширенные двоичные представления содержат не более 2 log2(N + 55) цифр, в результате чего общее количество двоичных цифр, необходимых для дополнительного определения внутренних состояний, не превышает 210 log2(N + 55). Сюда нужно добавить цифры, необходимые для добавочных символов 0, 1, R и L, что составляет еще 527 цифр (включая одну возможную добавочную «команду-пустышку» и учитывая, что мы можем исключить шесть символов 0 по правилу, согласно которому 00 можно представить в виде 0). Таким образом, для определения предписания K требуется больше двоичных цифр, чем для определения алгоритма A, однако разница между этими двумя величинами не превышает 527 + 210 log2(N + 55):

κ < α + 527 + 210 log2(N + 55).

Применив полученное выше соотношение α ≥ 6N - 6, получим (учитывая, что 210 log26 > 542)

κ < α - 15 + 210 log2(α + 336).

Затем найдем степень сложности η конкретного вычисления Ck(k), получаемого посредством этой процедуры. Вспомним, что степень сложности машины Tm(n) определяется как количество двоичных цифр в большем из двух чисел m, n. В данной ситуации Ck = Tk, так что число двоичных цифр в числе «m» этого вычисления равно κ. Для того чтобы определить, сколько двоичных цифр содержит число «n» этого вычисления, рассмотрим ленту, содержащую вычисление Ck(k). Эта лента начинается с последовательности символов 111110, за которой следует двоичное выражение числа k', и завершается последовательностью 11011111. В соответствии с предложенным в НРК соглашением всю эту последовательность (без последней цифры) следует читать как двоичное число; эта операция дает нам номер «n», который присваивается ленте машины, выполняющей вычисление Tm(n). То есть число двоичных цифр в данном конкретном номере «n» равно κ + 13, и, следовательно, число κ + 13 совпадает также со степенью сложности ту вычисления Ck(k), благодаря чему мы можем записать η = κ + 13 < α — 2 + 210 log2(α + 336), или проще:

η < α + 210 log2(α + 336).

Детали вышеприведенного рассуждения специфичны для данного конкретного предложенного еще в НРК способа кодирования машин Тьюринга, и при использовании какого-либо иного кодирования они также будут несколько иными. Основная же идея очень проста. Более того, прими мы формализм λ-исчисления, вся операция оказалась бы, в некотором смысле, почти тривиальной. (Достаточно обстоятельное описание λ-исчисления Черча можно найти в НРК, конец главы 2; см. также [52].) Предположим, например, что алгоритм A определяется некоторым λ-оператором A, выполняющим действие над другими операторами P и Q, что выражается в виде операции (AP)Q. Оператором P здесь представлено вычисление Cp, а оператором Q — число q. Далее, оператор A должен удовлетворять известному требованию, согласно которому для любых P и Q должно быть истинным следующее утверждение:

Если завершается операция (AP)Q, то операция PQ не завершается.

Мы без труда можем составить такую операцию λ-исчисления, которая не завершается, однако этот факт невозможно установить посредством оператора A. Например, положим

K = λx.[(Ax)x],

т.е. KY = (AY)Y для любого оператора Y. Затем рассмотрим λ-операцию


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Тени разума. В поисках науки о сознании"

Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Роджер Пенроуз

Роджер Пенроуз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"

Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.