Роджер Пенроуз - Тени разума. В поисках науки о сознании

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Тени разума. В поисках науки о сознании"
Описание и краткое содержание "Тени разума. В поисках науки о сознании" читать бесплатно онлайн.
Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.
Для широкого круга читателей, интересующихся наукой.
Получаемая в результате последовательность символов 0 и 1 представляет собой самую обыкновенную (т.е. нерасширенную) двоичную запись номера машины Тьюринга n для данной машины (см. главу 2 НРК). Мы называем ее n-й машиной Тьюринга и обозначаем T = Tn. Каждый такой двоичный номер (с добавлением в конце последовательности 110) есть последовательность символов 0 и 1, в которой нигде не встречается более четырех 1 подряд. Номер n, не удовлетворяющий данному условию, определяет «фиктивную машину Тьюринга», которая прекратит работать, как только встретит «команду», содержащую более четырех 1. Такую машину «Tn» мы будем называть некорректно определенной. Ее работа с какой угодно лентой является по определению незавершающейся. Аналогично, если действующая машина Тьюринга встретит команду перехода в состояние, определенное числом, большим всех тех чисел, для которых были явно заданы возможные последующие действия, то она также «зависнет»: такую машину мы будем полагать «фиктивной», а ее работу — незавершающейся. (Всех этих неудобств можно без особого труда избежать с помощью тех или иных технических средств, однако реальной необходимости в этом нет; см. §2.6, Q4).
Для того чтобы понять, как на основе заданного алгоритма A построить явное незавершающееся вычисление, факт незавершаемости которого посредством алгоритма A установить невозможно, необходимо предположить, что алгоритм A задан в виде машины Тьюринга. Эта машина работает с лентой, на которой кодируются два натуральных числа p и q. Мы полагаем, что если завершается вычисление A(p, q), то вычисление, производимое машиной Tp с числом q, не завершается вовсе. Вспомним, что если машина Tp определена некорректно, то ее работа с числом q не завершается, каким бы это самое q ни было. В случае такого «запрещенного» p исход вычисления A(p, q) может, согласно исходным допущениям, быть каким угодно. Соответственно, нас будут интересовать исключительно те числа p, для которых машина Tp определена корректно. Таким образом, в записанном на ленте двоичном выражении числа p пяти символов 1 подряд содержаться не может. Значит, для обозначения на ленте начала и конца числа p мы вполне можем воспользоваться последовательностью 11111.
То же самое, очевидно, необходимо сделать и для числа q, причем оно вовсе не обязательно должно быть числом того же типа, что и p. Здесь перед нами возникает техническая проблема, связанная с чрезвычайной громоздкостью машинных предписаний в том виде, в каком они представлены в НРК. Удобным решением этой проблемы может стать запись чисел p и q в пятеричной системе счисления. (В этой системе запись «10» означает число пять, «100» — двадцать пять, «44» — двадцать четыре и т.д.) Однако вместо пятеричных цифр 0, 1, 2, 3 и 4 я воспользуюсь соответствующими последовательностями символов на ленте 0,10,110,1110 и 11110. Таким образом, мы будем записывать
0 как 0
1 как 10
2 как 110
3 как 1110
4 как 11110
5 как 100
6 как 1010
7 как 10110
8 как 101110
9 как 1011110
10 как 1100
11 как 11010
12 как 110110
13 как 1101110
14 как 11011110
15 как 11100
16 как 111010
…
25 как 1000
26 как 10010
и т.д.
Под «Cp» здесь будет пониматься вычисление, выполняемое корректно определенной машиной Тьюринга Tr, где r есть число, обыкновенное двоичное выражение которого (с добавлением в конце последовательности символов 110) в точности совпадает с числом p в нашей пятеричной записи. Число q, над которым производится вычисление Cp, также необходимо представлять в пятеричном выражении. Вычисление же A(p, q) задается в виде машины Тьюринга, выполняющей действие с лентой, на которой кодируется пара чисел p, q. Запись на ленте будет выглядеть следующим образом:
…00111110p111110q11111000…,
где p и q суть вышеописанные пятеричные выражения чисел, соответственно, p и q.
Требуется отыскать такие числа p и q, для которых не завершается не только вычисление Cp(q), но и вычисление A(p, q). Процедура из §2.5 позволяет сделать это посредством отыскания такого числа k, при котором вычисление Ck, производимое с числом n, в точности совпадает с вычислением A(n, n) при любом n, и подстановки p = q = k. Для того чтобы проделать это же в явном виде, отыщем машинное предписание K(= Ck), действие которого на последовательность символов на ленте
…00111110n11111000…
(где n есть пятеричная запись числа n) в точности совпадает с действием алгоритма A на последовательность
…00111110n111110n11111000…
при любом n. Таким образом, действие предписания K сводится к тому, чтобы взять число n (записанное в пятеричном выражении) и однократно его скопировать, при этом два n разделяются последовательностью 111110 (та же последовательность начинает и завершает всю последовательность отметок на ленте). Следовательно, оно воздействует на получаемую в результате ленту точно так, как на эту же ленту воздействовал бы алгоритм A.
Явную модификацию алгоритма A, дающую такое предписание K, можно произвести следующим образом. Сначала находим в определении A начальную команду 01 → X и отмечаем для себя, что это в действительности за «X». Мы подставим это выражение вместо «X» в спецификации, представленной ниже. Один технический момент: следует, помимо прочего, положить, чтобы алгоритм A был составлен таким образом, чтобы машина, после активации команды 01 → X, никогда больше не перешла во внутреннее состояние 0 алгоритма A. Это требование ни в коей мере не влечет за собой каких-либо существенных ограничений на форму алгоритма[19]. (Нуль можно использовать только в командах-пустышках.)
Затем при определении алгоритма A необходимо установить общее число N внутренних состояний (включая и состояние 0, т.е. максимальное число внутренних состояний A будет равно N - 1). Если в определении A нет завершающей команды вида (N - 1)1 → Y, то в конце следует добавить команду-пустышку (N - 1)1 → 00R. Наконец, удалим из определения A команду 01 → X и добавим ее к приводимому ниже списку машинных команд, а каждый номер внутреннего состояния, фигурирующий в этом списке, увеличим на N (символом ∅ обозначено результирующее внутреннее состояние 0, а символом «X» в записи «11 → X» представлена команда, которую мы рассмотрели выше). (В частности, первые две команды из списка примут в данном случае следующий вид: 01 → N1R, N0 → (N + 4)0R.)
∅1 → 01R, 00 → 40R, 01 → 01R, 10 → 21R, 11 → X, 20 → 31R, 21 → ∅0R, 30 → 551R, 31 → ∅0R, 40 → 40R, 41 → 51R, 50 → 40R, 51 → 61R, 60 → 40R, 61 → 71R, 70 → 40R, 71 → 81R, 80 → 40R, 81 → 91R, 90 → 100R, 91 → ∅0R, 100 → 111R, 101 → ∅0R, 110 → 121R, 111 → 120R, 120 → 131R, 121 → 130R, 130 → 141R, 131 → 140R, 140 → 151R, 141 → 10R, 150 → 00R, 151 → ∅0R, 160 → 170L, 161 → 161L, 170 → 170L, 171 → 181L, 180 → 170L, 181 → 191L, 190 → 170L, 191 → 201L, 200 → 170L, 201 → 211L, 210 → 170L, 211 → 221L, 220 → 220L, 221 → 231L, 230 → 220L, 231 → 241L, 240 → 220L, 241 → 251L, 250 → 220L, 251 → 261L, 260 → 220L, 261 → 271L, 270 → 321R, 271 → 281L, 280 → 330R, 281 → 291L, 290 → 330R, 291 → 301L, 300 → 330R, 301 → 311L, 310 → 330R, 311 → 110R, 320 → 340L, 321 → 321R, 330 → 350R, 331 → 331R, 340 → 360R, 341 → 340R, 350 → 371R, 351 → 350R, 360 → 360R, 361 → 381R, 370 → 370R, 371 → 391R, 380 → 360R, 381 → 401R, 390 → 370R, 391 → 411R, 400 → 360R, 401 → 421R, 410 → 370R, 411 → 431R, 420 → 360R, 421 → 441R, 430 → 370R, 431 → 451R, 440 → 360R, 441 → 461R, 450 → 370R, 451 → 471R, 460 → 480R, 461 → 461R, 470 → 490R, 471 → 471R, 480 → 480R, 481 → 490R, 490 → 481R, 491 → 501R, 500 → 481R, 501 → 511R, 510 → 481R, 511 → 521R, 520 → 481R, 521 → 531R, 530 → 541R, 531 → 531R, 540 → 160L, 541 → ∅0R, 550 → 531R.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Тени разума. В поисках науки о сознании"
Книги похожие на "Тени разума. В поисках науки о сознании" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Роджер Пенроуз - Тени разума. В поисках науки о сознании"
Отзывы читателей о книге "Тени разума. В поисках науки о сознании", комментарии и мнения людей о произведении.