» » » » Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы


Авторские права

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Здесь можно купить и скачать "Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «ОНИКС 21 век» «Мир и Образование», год 2003. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы
Рейтинг:
Название:
Сборник задач по математике с решениями для поступающих в вузы
Издательство:
неизвестно
Год:
2003
ISBN:
5-329-00766-6, 5-94666-080-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сборник задач по математике с решениями для поступающих в вузы"

Описание и краткое содержание "Сборник задач по математике с решениями для поступающих в вузы" читать бесплатно онлайн.



Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.

Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.

Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.






Однородные уравнения. Уравнение вида

а0 sink x + а1 sink − 1 x cos x + ...

... + аk1 sin x cosk − 1 x + аk cosk x = 0     (1)

называется однородным, так как все слагаемые его левой части имеют одинаковую степень относительно sin x и cos x.

При α0 ≠ 0 среди решений уравнения (1) не содержится значений x, при которых cos x = 0. В самом деле, полагая cos x = 0, мы получаем из уравнения (1): а0 sink x = 0, откуда sink x = 0, так как а0 ≠ 0 по условию. Но это невозможно, поскольку нет таких значений x, при которых sin x и cos x одновременно обращаются в нуль.

Аналогично при ак ≠ 0 среди решений уравнения (1) не содержится значений x, при которых sin x = 0.

Наметим пути решения уравнения (1). Рассмотрим два случая.

Случай 1. a0 ≠ 0 и аk ≠ 0. В этом случае, разделив уравнение (1) на cosk x, мы получим (поскольку cos x ≠ 0) равносильное ему алгебраическое уравнение

а0ук + а1уk − 1 + ... + аk − 1у + аk = 0       (2)

относительно у = tg x.

Можно также делить уравнение (1) на sink x. Тогда (поскольку sin x ≠ 0) мы получим равносильное уравнению (1) алгебраическое уравнение

а0 + а1z + ... + аk − 1zk − 1 + аkzk = 0      (3)

относительно z = ctg x.

Пример 1. Решить уравнение

sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x = 0.     (4)

Разделив его на cos³ x, получим алгебраическое уравнение

у³ − 2у² − у + 2 = 0,

где у = tg x. Последнее уравнение легко решается путем разложения его левой части на множители, и мы находим корни:

у1 = −1, у2 = 1, у3 = 2.

Теперь остается решить совокупность уравнений

tg x = −1, tg x = 1, tg x = 2.

Мы получим следующие корни уравнения (1):

x = nπ ± π/4 , x = nπ + arctg 2.

Случай 2. a0 = 0, или ak = 0, или а0 = ak = 0. Пусть, например, a0 = ak = 0, а a1 ≠ 0 и ak − 1 ≠ 0. Тогда уравнение (1) примет вид

a1 sink − 1 x cos x + a2 sink − 2 x cos² x + ...

... + ak − 2 sin² x cosk − 2 x + ak − 1 sin x cosk − 1 x = 0.      (5)

В левой части уравнения выносим за скобки все, что возможно (в случае уравнения (5) мы можем вынести за скобки произведение sin x cos x). В результате получим уравнение

sin x cos x (a1 sink − 1 x + a2 sink − 2 x cos x + ...

... + ak − 2 sin x cosk − 2 x + ak − 1 cosk − 1 x) = 0,

распадающееся на совокупность уравнений

sin 2х = 0,

a1 sink − 1 x + a2 sink − 2 x cos x + ...

... + ak − 2 sin x cosk − 2 x + ak − 1 cosk − 1 x = 0,

первое из которых решается просто (см. с. 77), а пути решения второго уравнения показаны в случае 1).

Пример 2. Решить уравнение

sin4 x cos x − 2 sin³ x cos² x − sin² x cos³ x + 2 sin x cos4 x = 0.

Левую часть уравнения разлагаем на множители:

sin x cos x (sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x) = 0. Получаем совокупность уравнений

sin x = 0, cos x = 0,

sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x = 0.

Решения первых двух уравнений даны на с. 77. Третье уравнение подробно рассмотрено в примере 1.


Системы тригонометрических уравнений. Предположим, что, преобразовывая систему тригонометрических уравнений, мы пришли к системе

Если переписать эту систему в виде

то, складывая и вычитая полученные уравнения, придем к выводу, что

Решили ли мы систему? Оказывается, нет. Решить систему — значит, найти все ее решения, а из поля нашего зрения выпало такое очевидное решение как x = 3π/2, у = π/4 (ни при каком целом n из выражения π/4 + 3nπ/2 нельзя получить 3π/4).

В чем же ошибка? Ошибка очень проста: переходя от первоначальной системы к выражениям относительно x + у и xу, мы должны были сохранить их «независимость», которая присутствовала в исходной системе. Вместо этого мы «связали» их введением общего целочисленного переменного n.

Правильным было бы такое решение:

откуда

x = π/4 + (2т + n), у = − π/4 − π/2 (2тn).

Прежде чем приступать к решению задач, ознакомьтесь с введением к главе 9.


Решите уравнения:

13.1. 1 + sin 2x + 2√2 cos 3x sin (x + π/4) = 2 sin x + 2 cos 3x + cos 2x.

13.2. .

13.3. .

13.4. tg 2x tg 7x = 1.

13.5.

13.6. 2 tg 3x − 3 tg 2x = tg² 2x tg 3x.

13.7. sin³ x + cos³ x + 1/√2 sin 2x sin (x + π/4) = cos x + sin 3x.

13.8. 4 tg 4x − 4 tg 3x − tg 2x = tg 2x tg 3x tg 4x.

13.9. Найдите решения уравнения

лежащие в интервале (0, 2π).

13.10. Решите уравнение

sin (x − α) = sin x − sin α.

13.11. Найдите решения уравнения

|cos 2x| = |sin² xа|

(а — действительное число), удовлетворяющие неравенству

0 ≤ x ≤ 2π.


Решите уравнения:

13.12.

13.13. (tg x + sin x)½ + (tg x − sin x)½ = 2 tg½ x cos x.

13.14. ctg 2x + 3 tg 3x = 2 tg x + 2/sin 4x.

13.15. sec x² + cosec x² + sec x² cosec x² = 1.

13.16.

13.17. 4 sin x + 2 cos x = 2 + 3 tg x.

13.18. cos x = cos² 3x/4.

13.19. sin 4x[2 + ctg x + ctg (π/4 − x) = 2√2(1 + sin 2x + cos 2x).

13.20. sin 4x sin x − sin 3x sin 2x = ½ cos 3x + (1 + cos x)½ .

13.21. sin 4x = m tg x, где m > 0.

13.22. sin x/2 (sin x + sin 2x + ... + sin 100x) = ½ sin 101x/2.

13.23. sin² x + sin 2x sin 4x + ... + sin nx sin n²x = 1.

13.24. 4 cos x − 2 cos 2x − cos 4x = 1.

13.25.

13.26. sin³ x + cos³ x = 1.

13.27. cos² 3x + ¼ cos² x = cos 3x cos4 x.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сборник задач по математике с решениями для поступающих в вузы"

Книги похожие на "Сборник задач по математике с решениями для поступающих в вузы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Альберт Рывкин

Альберт Рывкин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы"

Отзывы читателей о книге "Сборник задач по математике с решениями для поступающих в вузы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.