» » » » Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы


Авторские права

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Здесь можно купить и скачать "Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «ОНИКС 21 век» «Мир и Образование», год 2003. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы
Рейтинг:
Название:
Сборник задач по математике с решениями для поступающих в вузы
Издательство:
неизвестно
Год:
2003
ISBN:
5-329-00766-6, 5-94666-080-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сборник задач по математике с решениями для поступающих в вузы"

Описание и краткое содержание "Сборник задач по математике с решениями для поступающих в вузы" читать бесплатно онлайн.



Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.

Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.

Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.






x < 1,   2 < x < 3,   4 < x < 5,   6 < x < 7,   8 < x < 9,   x > 10.

Приемы, позволяющие решать более сложные неравенства типа (1), станут понятны, если вы разберете примеры 2 и 3 и следующие за ними упражнения.

Пример 2. Решить неравенство (x + 3)(2x + 2)(x − 4)²(5 − x) > 0.

Перепишем неравенство в виде

(x + 3)(x + 1)(x − 4)²(x − 5) < 0,

где в каждой скобке стоит двучлен с коэффициентом 1 при x. Множитель (x − 4)² всегда неотрицателен и только в точке x = 4 обращается в нуль. Поэтому его влияние на решение неравенства

ограничивается тем, что он исключает точку x = 4 (рис. 10.5). Остается проследить чередование знаков в неравенстве

(x + 3)(x + 1)(x − 5) < 0.

Ответ. x < −3,  −1 < x < 4,   4 < x < 5.

Пример 3. Решить неравенство

(3)

Данное неравенство не удовлетворяется в тех точках, где множители, стоящие в знаменателе, обращаются в нуль (x = 4, x = 2). Поэтому исключим эти точки из дальнейшего рассмотрения, обозначив их на рис. 10.6 светлыми кружками.

В точках же, в которых обращается в нуль числитель (x = −3, x = −1, x = 5), неравенство превращается в равенство, т. е. эти точки должны войти в решение неравенства (3). Отметим их на рисунке черными кружками[8]).

Множители (x + 3)² и (x − 4)², не меняющие знака на всей числовой оси, можно опустить, так как их влияние уже учтено. Во всех остальных точках неравенство (3) равносильно такому:

(x + 1)(x − 5)(x − 2) < 0.

Ответ. x ≤ −1,  2 < x < 4,  4 < x ≤ 5.

Упражнения

Решите неравенства:

4. (5 − 2х)(3 − x)³(x − 4)² < 0.

5. 

Иррациональные неравенства. Решая уравнения, мы можем получать следствия данного уравнения и закончить решение проверкой, которая отсеивает посторонние корни. При решении же неравенств обычно получаются целые интервалы решений, что сильно усложняет проверку. Поэтому неравенства преобразовывают так, чтобы не нарушалась равносильность.

Начнем с иррациональных неравенств.

Пример 4. Решить неравенство

(4)

Нередко предлагают такое «решение»:

x² − 55х + 250 < (x − 14)²,

−55х + 250 < −28х + 196,

x > 2,

которое обосновывают следующим образом: «Левая часть меньше правой, но неотрицательна, так как мы имеем дело с арифметическим корнем. Следовательно, обе части данного неравенства неотрицательны, и его можно возвести в квадрат, не нарушая равносильности неравенства».

Чтобы убедиться, что неравенство решено неверно, подставим в данное неравенство, например, x = 10.

Проанализируем ход приведенных здесь рассуждений. Они доказывают, что если неравенство (4) удовлетворяется при некоторых x, то обе части его можно возвести в квадрат, и тогда x > 2. Однако отсюда не следует обратное, что исходное неравенство удовлетворяется при всех x > 2.

Присутствие в неравенстве (4) квадратного корня накладывало на неизвестное определенные ограничения, которые оказались разрушенными после возведения неравенства (4) в квадрат.

Трехчлен x² − 55х + 250 вначале стоял под знаком квадратного корня, а потому должен был быть неотрицательным. После возведения неравенства (4) в квадрат это ограничение исчезло; теперь ничто не мешает трехчлену стать отрицательным. Даже наоборот, в этом случае неравенство x² − 55х + 250 < (x − 14)² удовлетворяется наверняка, так как справа стоит величина, которая не может стать меньше нуля.

Чтобы подкоренное выражение оставалось неотрицательным, мы должны добавить к полученному после возведения в квадрат неравенству требование x² − 55x + 250 ≥ 0, т. е. x ≤ 5, x ≥ 50. Из полупрямой x > 2 оказались выделенными две ее части: 2 < x ≤ 5, x ≥ 50.

Но и теперь еще не все. Достаточно подставить в исходное неравенство значение x = 4, и мы убедимся, что оно не удовлетворяется. Дело в том, что при возведении в квадрат мы устранили еще одно ограничение, которое присутствовало в неравенстве (4). В левой части первоначального неравенства стоит квадратный корень, т. е. неотрицательное число. Чтобы это неравенство удовлетворялось, правая его часть x − 14 должна быть больше нуля. Итак, надо добавить ограничение x − 14 > 0, которое присутствовало в исходном неравенстве и оказалось разрушенным после возведения в квадрат.

Таким образом, после возведения данного неравенства в квадрат, мы должны позаботиться о сохранении всех ограничений, которые присутствуют в данном неравенстве. Неравенство (4) нужно было заменить системой

решая которую мы нашли бы, что

т. е. x ≥ 50.

Упражнения

В каждом из неравенств 6—9 освободитесь от иррациональности, не нарушая равносильности:

6.

7.

8.

9.

Показательные и логарифмические неравенства. При решении показательных и логарифмических неравенств пользуются следующими свойствами:

1. Неравенство f(x)φ(x) > 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

1а. Неравенство f(x)φ(x) < 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

2. Неравенство logf(x)φ(x) > 0 равносильно совокупности двух систем неравенств:

или системе неравенств

2а. Неравенство  logf(x)φ(x) < 0 равносильно совокупности двух систем неравенств:

или системе неравенств

Решения неравенств  f(x)φ(x) < 1 и  f(x)φ(x) > 1 в предположении, что допускаются отрицательные значения f(x), разобраны в задачах 10.29, 10.30, 10.32.

Запомнить эти свойства можно следующим образом: степень больше единицы, если основание и показатель степени одинаково расположены по отношению к единице и нулю соответственно (т. е. основание правее единицы и показатель правее нуля или основание левее единицы и показатель левее нуля); логарифм больше нуля, если основание и логарифмируемое выражение одинаково расположены по отношению к единице. Если расположение элементов, о которых шла речь, неодинаково, то степень меньше единицы, а логарифм меньше нуля.


10.1. Докажите, что если а + b = 2, где а и b — действительные числа, то а4 + b4 ≥ 2.

10.2. Докажите, что

(1 + a1)(1 + а2)...(1 + аn) ≥ 2n,

если а1, а2, ..., аn, аn — положительные числа и а1а2...аn = 1.

10.3. Дано а + b = с, где а, b, с — положительные числа. Докажите, что

а⅔ + b⅔ > с⅔ .

10.4. Докажите, что −x³ + x² ≤ ¼, если 0 ≤ x ≤ 1.

10.5. Докажите неравенство

при условии, что а + b + с = 1, а подкоренные выражения неотрицательны.

10.6. Докажите неравенство

(а + b)n < 2n(аn + bn),

если а > 0, b > 0, n — натуральное число.

10.7. Докажите, что при а > b > 0 и pq где а, b и с — положительные и не равные друг другу числа, не пользуясь неравенствами между средним арифметическим и средним геометрическим трех чисел.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сборник задач по математике с решениями для поступающих в вузы"

Книги похожие на "Сборник задач по математике с решениями для поступающих в вузы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Альберт Рывкин

Альберт Рывкин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы"

Отзывы читателей о книге "Сборник задач по математике с решениями для поступающих в вузы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.