Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
70
Атле Сельберг, великий гуру теории чисел нашего времени, на момент написания этих строк (июнь 2002) все еще работает в институте и не прекращает занятий математикой. Связанная с ним история будет рассказана в главе 22. Он родился в Лангесунде, Норвегия, 14 июня 1917 г. (Атле Сельберг умер 6 августа 2007 г. — Примеч. перев.)
71
Риман, Гаусс, Дирихле и Эйлер все удостоены этого отличия. Кратер Римана расположен на 87°E 39°N.
72
Возможно, следует объяснить, что у математиков особый подход к изучению иностранных языков. Для чтения математических текстов не на своем родном языке глубокое знание этого языка вовсе не требуется. Достаточно выучить несколько десятков распространенных слов и конструкций, используемых при изложении математической канвы: «отсюда следует, что…», «достаточно показать, что…», «без потери общности…» и т.д. Остальное составляют обозначения, такие как √ и ∑, единые во всех языках (хотя и с незначительными «диалектными» отклонениями в зависимости от традиций, принятых в данной стране). Разумеется, некоторые математики — превосходные лингвисты. Андре Вейль (см. главу 17.iii) говорил и читал по-английски, по-немецки, по-португальски, по-гречески, на латыни и на санскрите, помимо своего родного французского. Но я имею в виду обычных математиков.
73
Двое из шести детей Гаусса эмигрировали в Соединенные Штаты, где приняли участие в заселении штата Миссури.
74
Горы Гарц (Харц) — самые высокие горы Северной Германии, располагаются на территории земель Нижняя Саксония, Саксония-Анхальт и Тюрингия. Наивысшая точка — Брокен, 1142 м. — считается самым известным местом встреч ведьм в Европе. Эта гора описана также в «Фаусте» Гете. (Примеч. перев.)
75
«Неслабая формула» на самом деле не столь уж и страшна. Если, конечно, вы не забыли математику из старших классов. За исключением дзета-функции, там нет ничего такого, чего бы не проходили, по крайней мере частично, в школе. Синус и факториал — это, как говорят математики, «элементарные» функции, так что выписанная формула «элементарно» связывает значение дзета-функции при аргументе 1 − s со значением при аргументе s. Такая формула, кстати сказать, называется «функциональным уравнением».
76
К слову, этот факт был впервые доказан Бернхардом Риманом.
77
Чтобы суммировать ряд к другому значению, необходимо переставить бесконечное число слагаемых; в отношении конечных сумм, разумеется, верен закон перестановочности для сложения. (Примеч. перев.)
78
Эдвардс Х.М. Дзета-функция Римана. 1974. Перепечатано изд-вом Dover в 2001 г.
79
Несмотря на некоторое число печальных примеров, — как, скажем, Риман — математики высокого уровня демонстрируют потрясающее здоровье. При написании этой книги меня поразило число математиков, доживших до значительного возрасту и продолжавших активно трудиться практически до конца своих дней. «Математика — очень тяжелая работа, и ее корифеи имеют тенденцию быть выше среднего в том, что касается энергии и здоровья. Ниже определенного предела человек сдает, но выше этого предела напряженная умственная работа способствует сохранению энергии и здоровья (а также — как можно судить из многочисленных исторических свидетельств на протяжении многих лет — способствует долголетию)» (Литлвуд Дж. И. Искусство работы математика. 1967). Литлвуд, о котором еще много будет сказано в главе 14, стал иллюстрацией своего собственного тезиса, дожив до 92 лет. В 1972 г. его коллега X.А. Холлонд сделал о нем следующую запись: «Ему идет 87-й год, а он продолжает работать по нескольку часов подряд, занимаясь написанием статей для публикации и помогая математикам, которые прислали ему свои задачи». (Цит. по Беркил Дж. Ч. в кн.: Математика: Люди, проблемы, результаты. Brigham Young University. 1984.)
80
О распределении нулей функции ζ(s) и их арифметических следствиях. (Примеч. перев.)
81
Имеется в виду роман-притча Г. Мелвилла «Моби Дик, или Белый Кит» (1851). (Примеч. перев.)
82
«Прекрасная эпоха» — название, закрепившееся за периодом 1890–1914 гг., характеризовавшимся стабильностью жизни, расцветом культуры и техники. Впрочем надо заметить, что название это появилось после Первой мировой войны и носило отчетливо ностальгический характер. (Примеч. перев.)
83
Эта музыка — наряду с музыкой Баха, Бетховена, Чайковского, Мусоргского, Понкьелли и Стравинского — была использована в классической полнометражной анимационной ленте «Фантазия» (1940). (Примеч. перев.)
84
Нет, не могу сдержаться. «Если f — аналитическая функция в кольце 0 < r1 < |z| < r2 < ∞, r — некоторое число строго между r1 и r2, а M1, M2 и M — максимумы функции f на трех окружностях, соответствующих r1, r2 и r, то выполняется неравенство:
Mln(r2/r1) ≤ M1ln(r2/r)M2ln(r/r1)».
85
Годы жизни Стилтьеса — 1856-1894.
86
«Полученные доклады». Этот термин столь распространен в научной библиографии, что часто сокращается до C.R.
87
В 1627 г. Декарт присутствовал при осаде Ла-Рошели, а еще до этого, во время Тридцатилетней войны, служил наемником, отчасти из желания «посмотреть мир». Одной же из вероятных причин смерти Декарта в 49-летнем возрасте (в 1650 г. в Стокгольме называется необходимость раннего подъема по утрам для занятий со шведкой королевой Кристиной. (Примеч. перев.)
88
Он не вступил в коммунистическую партию, но его дочь Жаклин вступила.
89
Русский перевод этой книги вышел в Москве в 1970 г. в издательстве «Советское радио». (Примеч. перев.)
90
Хотя слава доказательства ТРПЧ принадлежит в равной мере Адамару и де ля Валле Пуссену, я написал массу всего о первом и почти ничего о втором. Отчасти это вызвано тем, что я нахожу Адамара интересным и симпатичным человеком. Отчасти же тем, что о де ля Валле Пуссене имеется гораздо меньше материалов. Будучи прекрасным математиком, он, по-видимому, не проявлял себя ни в каких других сферах. Я спросил об этом у Атле Сельберга, единственного из тех математиков, с кем я разговаривал, который мог знать обоих. Адамар? «А, да. Я встречал его на Кембриджском конгрессе» (т.е. в 1950 г). Де ля Валле Пуссен? «Нет. Я никогда его не встречал, и не знаю никого, кто бы встречал. Не думаю, что он много путешествовал».
91
В 2006 г. конгресс прошел в Мадриде (собрав более 4500 участников), а конгресс 2010 г. планируется провести в Хайдерабаде (Индия). (Примеч. перев.)
92
Буквально — «девять зулусских цариц правили Китаем», фраза в русском переводе столь же бессмысленная, как и в оригинале, но, кроме того, еще и бесполезная. Вообще-то одной этой фразой дело в любом случае не ограничивается: в математике встречаются еще и ажурные буквы H и O. В рамках аналогии, приводимой автором в следующем абзаце, это, если угодно, огромные и толстые матрешки, которые по некоторым признакам уже не совсем матрешки. (Примеч. перев.)
93
В наше время фазу чаще называют «аргументом» и обозначают Arg(z). Я использовал старое название (в оригинале «amplitude» и Am(z) — пер.), отчасти из уважения к Г.Х. Харди (см. главу 14.ii), а отчасти чтобы избежать путаницы со словом «аргумент» для обозначения «числа, к которому применяется функция». (В переводе, следуя желанию автора избежать подобной путаницы, использован термин «фаза», который несет в себе некоторые «физические» коннотации, но в целом достаточно ясно указывает на то, что он призван обозначать. — Примеч. перев.)
94
Гильберт родился в 1862 г. в Велау, ныне поселок Знаменск Калининградской области. (Примеч. перев.)
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.