» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






17

Вот только один пример неожиданного появления числа e. Возьмем случайное число, заключенное между 0 и 1. Теперь возьмем другое и прибавим его к первому. Продолжим так поступать, накапливая случайные числа. Сколько в среднем случайных чисел потребуется, чтобы сумма оказалась больше, чем 1? Ответ: 2,71828….

18

Одно из великих математических открытий Античности, сделанное Пифагором или одним из его учеников около 600 г. до P.X., состояло в том, что не всякое число есть целое или дробь. Например, квадратный корень из 2, без сомнения, не является целым. Грубая арифметика показывает, что он лежит где-то между 1,4 (которое в квадрате дает 1,96) и 1,5 (которое в квадрате дает 2,25). Это, однако, и не дробь. Доказательство таково. Пусть S обозначает множество положительных целых чисел n, для которых выполнено такое свойство: n√2 — также положительное целое число. Если множество S не пусто, в нем есть наименьший элемент. (Любое непустое множество положительных целых чисел имеет наименьший элемент.) Обозначим этот наименьший элемент буквой k. Теперь образуем число u = (√2 − 1)k. Легко видеть, что (i) u меньше, чем k, (ii) u — положительное целое и (iii) u√2 — также положительное целое, так что (iv) u лежит в множестве S. Это противоречие, поскольку мы определили k как наименьший элемент из S, и, следовательно, предположение, из которого мы исходили, — что S не пусто — должно быть ложным. Следовательно, множество S пусто. Следовательно, нет положительного целого числа n, для которого n√2 — положительное целое число. Следовательно, √2 — не дробь. Число, которое не является ни целым, ни дробным, называется «иррациональным», поскольку оно не есть отношение (ratio) двух целых чисел.

19

Правило знаков: минус умножить на минус дает плюс. Многие люди застревают в арифметике именно на этом месте. Они спрашивают: «Что это значит — умножить отрицательное на отрицательное?» Лучшее объяснение, какое мне приходилось встречать, принадлежит Мартину Гарднеру. Оно таково. Рассмотрим большую аудиторию, в которой находятся два типа людей: хорошие и плохие. Определим «сложение» как «приглашение людей в аудиторию». Определим «вычитание» как «удаление людей из аудитории». Определим «положительный» как «хороший» (имея в виду «хороших людей»), а «отрицательный» — как «плохой». Прибавление положительного числа означает, что в аудиторию приходит сколько-то хороших, что несомненно повышает в ней уровень «хорошести». Прибавление отрицательного числа означает, что в аудиторию приходят плохие парни, что понижает суммарный уровень «хорошести». Вычитание положительного числа означает, что наружу выходит сколько-то хороших, и суммарный уровень «хорошести» понижается. Вычитание отрицательного числа означает уход нескольких плохих, в результате чего суммарная «хорошесть» повышается. Таким образом, прибавление отрицательного числа — это все равно что вычитание положительного, а вычитание отрицательного — все равно что прибавление положительного. Умножение — это просто кратное сложение. Минус три умножить на минус пять? Попросим выйти пятерых плохих парней. Повторим это три раза. Результат? Суммарная «хорошесть» увеличилась на 15… (Когда я проверил это на шестилетнем Дэниеле Дербишире, он сказал: «А что, если ты попросишь плохих парней выйти, а они не выйдут?» Философ-моралист в процессе становления!)

20

В отличие от распространенного американского обозначения log принятое у нас обозначение ln уже содержит напоминание не только о логарифме (буква l), но и о том, что это натуральный (т.е. в некотором смысле естественный) логарифм (буква n). Заметим попутно, что «стандартные» функции типа логарифма записываются, как правило, без скобок вокруг аргумента, если этот аргумент достаточно прост (например, выражается одной буквой N или x). (Примеч. перев.)

21

Георг был последним королем Ганновера. После сделанного в 1866 г. неудачного выбора, на чьей стороне воевать в австро-прусской войне, это королевство было в том же году поглощено Пруссией. Медаль, по-видимому, была отлита лишь к столетию Гаусса в 1877 г.

22

Среди разнообразных обстоятельств, позволявших герцогу притязать на славу, стоит, пожалуй, отметить, что он был отцом Каролины Брауншвейгской, вышедшей замуж за английского принца-регента. Брак оказался несчастным, и Каролина уехала из Англии. Но когда принц взошел на трон под именем Георга IV, она вернулась и предъявила свои права в качестве королевы. Это привело к незначительному конституционному кризису и одновременно к значительному увеселению публики по поводу стеснительного положения, в которое попал король, а также из-за довольно надменного характера его королевы, ее своеобразных личных привычек и вопиющих связей. Немалой популярностью пользовалась песенка:

Мадам, мы умоляем Вас
Оставить блуд, покинуть нас;
Но если выбирать одно —
Вы нас покиньте все равно.

(Пер. М. Визеля.)

Одна из теток герцога по материнской линии вышла замуж за императора Священной Римской империи и родила Марию-Терезию, великую императрицу Габсбургского дома. Другая вышла за Алексея Романова и стала матерью Петра II, номинального царя, в то самое время, когда Леонард Эйлер сходил с корабля в Санкт-Петербурге (раздел VI этой главы). Стоит только углубиться в генеалогию всех этих мелких германских правителей, как уже нельзя остановиться.

23

Не забыл ли я упомянуть, что, будучи из ряда вон выходящим математическим гением и первоклассным физиком, Гаусс был еще и блестящим астрономом, первым, кто правильно вычислил орбиту астероида?

24

После кометы Галлея — вторая комета, последовательные зафиксированные появления которой были после трудоемких вычислений связаны с одним и тем же космическим телом. (Примеч. перев.)

25

Чтобы узнать, является ли простым некоторое число N, надо просто делить его по очереди на числа 2, 3, 5, 7, … до тех пор, пока или одно из них не разделит N нацело, что будет означать, что N не простое, или… или что? Как узнать, когда остановиться? Ответ: остановиться надо, когда простое, на которое вы собрались разделить, оказывается больше, чем √N.Если, скажем, N равно 47, то √N = 6,85565…, так что надо проверить только делимость на 2, 3 и 5. Если ни одно из них не делит 47, то, значит, 47 — простое. Почему не надо проверять 7? Потому что 7×7 = 49, так что, если бы число 7 точно делило 47, частное было бы каким-то числом, меньшим 7. Аналогично, √701000 равен 837,2574. Последнее простое число ниже этого равно 829, а следующее простое выше этого есть 839. Если бы 839 делило 701000, то частное было бы числом, меньшим 839 — или некоторым простым, меньшим 839 (которое, следовательно, уже было проверено), или же составным, равным произведению еще меньших простых сомножителей…

26

Лежандр умер в нищете из-за того, что своей принципиальной позицией разгневал политических покровителей. Мне неловко, что я представил его здесь как вечно сердитого и слегка комического персонажа. Лежандр (1752-1833) был прекрасным математиком, одним из лучших во втором ряду, и в течение многих лет получал очень ценные результаты. Его «Элементы геометрии» были главным элементарным учебником по этому предмету в течение более чем столетия. Говорят, что именно эта книга побудила Эвариста Галуа — человека с трагической судьбой (от лица которого ведется повествование в романе Тома Пециниса «Французский математик») — выбрать своим занятием математику. Для нашего рассказа более существенно, что его книгу «Теория чисел» — переименованное третье издание упомянутых «Очерков» — школьный учитель дал почитать юноше Бернхарду Риману, который вернул ее менее чем через неделю со словами «Поистине прекрасная книга. Я теперь знаю ее наизусть». В книге было 900 страниц.

27

Русское издание: М.: Просвещение, 1979. (Примеч. перев.)

28

О числе Эйлера-Маскерони очень хорошо рассказано в главе 9 «Книги чисел», написанной Джоном Конуэем и Ричардом Гаем. Хотя я толком не описал его в данной книге, очень внимательный читатель заметит, как число Эйлера-Маскерони мелькнет за кадром в главе 5.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.