Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
<…> написанное вами, хотя и верно само по себе, упускает из виду весьма существенное обстоятельство, которое следует из квантовой аналогии. А именно — предсказание и детальное описание(1),(2) отклонений от ГУА-статистики в корреляциях между сильно разнесенными нулями. Эти отклонения заметил Эндрю Одлыжко (он наблюдал их в численной дисперсии положений нулей); он задался вопросом, не являются ли они результатом ошибки в его программе. Он чрезвычайно любезно предоставил мне полученные им данные, из которых получалось, что отклонения точно соответствуют «квантовой» теории, за исключением некоторых осцилляций малого масштаба, объяснение которым теперь нашли Джон Китинг и Эжен Богомольни(3). С моей точки зрения, данное ими объяснение этих отклонений является сильнейшим свидетельством в пользу гипотезы Римана; оно, кроме того, помещает неуловимый оператор в класс квантовых систем с классическим хаосом, а не в класс случайных матриц.
(1) Berry M.V. Semiclassical formula for the number variance of the Riemann Zeros, in: Nonlinearity Vol. 1. 1988. P. 399-407.
(2) Berry M.V. and Keating J.P. The Riemann Zeros and Eigenvalue Asymptotics, in: the SIAM Review. Vol. 41. №2. 1999. P. 236-266. [SIAM означает Society for Industrial and Applied Mathematics.]
(3) Bogomolny E. and Keating J.P. Asymptotics of the pair correlation of Riemann zeros. 1999.
A6В то время, когда я работал над книгой, я не знал о книге Джулиана Хейвила «Гамма: Изучение константы Эйлера», которая вышла примерно в то же время, что и «Простая одержимость», и целиком посвящена этой загадочной гамме. Она прекрасно написана и содержит много интересной математики, хотя и на несколько более высоком уровне, чем в моей книге. Я рекомендую ее каждому, кто хочет узнать, почему число 0,577215664901532860606512… так чертовски важно.
A7Книга Титчмарша вышла в переработанном (Роджером Хит-Брауном) издании в 1986 году.
A8Сэр Майкл Атья повторил тут вещь довольно известную: идеи о том, что алгебра = время, а геометрия = пространство, восходят по крайней мере к Гамильтону (т.е. к 1840-м годам).
A9«„Ансамбль“ (в данном употреблении, кстати, это слово было введено Альбертом Эйнштейном)…» Это, по-видимому, неверно. Один физик обратил мое внимание, что одна из глав в книге Уилларда Гиббса «Основные принципы статистической механики» называется «О движении систем или ансамблей систем на длительных промежутках времени». Эта книга опубликована в 1902 году, т.е. за три года до того, как Эйнштейн с блеском ворвался в физику, написав три статьи в Annalen der Physik. По-видимому, Гиббс был первым, кто употреблял этот термин таким образом. Однако я был бы весьма благодарен, если бы кто-нибудь смог дать более точную привязку.
Примечания
1
Никола Орем (Nicole d'Oresme) был не только математиком, но и естествоиспытателем, философом, физиком, астрономом и экономистом, а также воспитателем Дофина, будущего короля Карла V. (Примеч. перев.)
2
Стандартным русским словосочетанием является также математический анализ (или матанализ, как говорят, например, все те студенты, которые не называют его просто матаном). В переводе в подавляющем большинстве случаев оставлен просто «анализ», чего достаточно для передачи сути дела. Соответственно, прилагательное «аналитический» означает «[изучаемый или выраженный] средствами анализа». (Примеч. перев.)
3
Точнее, сумма некоторого числа членов гармонического ряда. (Примеч. перев.)
4
То есть для того, чтобы приблизиться к пределу — в данном случае к числу π — с хорошей точностью, надо брать члены последовательности с достаточно большими номерами. (Примеч. перев.)
5
Силы французской армии «Север» под командованием Франсуа Дюмурье и французской армии «Центр» под командованием Франсуа-Кристофа Келлермана остановили продвижение армии под командованием герцога Брауншвейгского Карла Вильгельма Фердинанда. Артиллерийское сражение оказалось тактически безрезультатным, но стратегически важным как доказательство жизнеспособности Французской революции. Книга «Пятнадцать решающих битв в мировой истории» вышла в 1851 г. (Примеч. перев.)
6
Этот исторический факт я усвоил, когда ходил в Англии в школу, с помощью следующей песенки викторианских времен:
Георг был Первый трусом; даже
Второй был ненамного гаже.
И не сыскал никто на свете
Достойных черт в Георге Третьем.
Когда ж Георг Четвертый помер —
То, к счастью, был последний номер.
На самом деле Георги на этом не закончились — в XX веке их было еще двое. (Здесь и далее не отмеченные особо примечания принадлежат автору.)
7
И математик, один из создателей дифференциального и интегрального исчисления (в частности, автор современного обозначения для интеграла). (Примеч. перев.)
8
Другой мощный подъем Эльбы произошел в 1962 г. и вызвал значительные жертвы и разрушения в районе Вендланд. После этого возвели систему крупных дамб. В августе 2002 г., как раз во время завершения моей работы над книгой, Эльба снова вышла из берегов. Однако сооруженные в 1962 г. дамбы выдержали напор, и регион пострадал меньше других, расположенных выше по течению.
9
Эрвин Нейеншвандер — профессор истории математики в Цюрихском университете. Он является главным авторитетом по жизни и творчеству Бернхарда Римана; он издал письма Римана. Я использовал в этой книге результаты его исследований. Я также многое взял из двух единственных изданных на английском книг, в которых удалось найти сколько-нибудь обстоятельный рассказ о Римане: «Риман, топология и физика» Михаила Монастырского (перевод 1998 г., выполненный Роджером Куком, Джеймсом Кингом и Викторией Кинг) и «Бернхард Риман, 1826-1866» Детлефа Лаугвитца (перевод 1999 г., выполненный Абе Шенитцером). Хотя это математические биографии — т.е. в них больше математики, чем биографических фактов, — обе книги позволяют составить хорошее представление о самом Римане и о его времени и содержат много ценных наблюдений. (См.: Монастырский М.И. Бернхард Риман. Топология. Физика. М.: Янус-К, 1999. — Примеч. перев.)
10
Еще бы не изматывали. 38 миль по прямой — это 10 часов ходьбы быстрым шагом.
11
Ганновер стал королевством только в 1814 г. До этого его правители носили титул курфюрста, означавший их право участвовать в выборах императора Священной Римской империи. Священная Римская империя прекратила свое существование в 1806 г.
12
Эрнст-Август был предпоследним королем Ганновера. В 1866 г. это королевство стало частью Прусской империи, что оказалось поворотным моментом в создании современной Германии. (Носивший титул герцога Камберлендского Эрнст-Август был пятым сыном Георга III. Королева Виктория была дочерью его старшего брата Эдуарда, герцога Кентского, умершего в 1828 г. — Примеч. перев.)
13
Оценки разнятся, но Гаусса почти всегда ставят в число первых трех — как правило, вместе с Ньютоном и Эйлером или Архимедом.
14
Генрих Вебер и Рихард Дедекинд подготовили первое издание в 1876 г. Самое последнее издание «Собрания трудов», составленное Рагаваном Нарасимханом, вышло в 1990 г. Кстати, по-немецки «собрание трудов» — Gesamelte Werke, и эти слова так часто встречаются в математической литературе, что, по моим наблюдениям, англоговорящие математики употребляют их по-немецки, совершенно не отдавая себе в этом отчета.
15
Абелева функция — это многозначная функция, получаемая при обращении интегралов определенного вида. Данное название не имеет широкого распространения в наше время. Мы упомянем многозначные функции в главе 3, теорию функций комплексной переменной в главе 13, а обращение интегралов — в главе 21.
16
Используя уже утвердившийся у нас американизм — «полным профессором». В этих же терминах «экстраординарный профессор» — это Assistant Professor, что до некоторой степени соответствует российскому доценту. (Примеч. перев.)
17
Вот только один пример неожиданного появления числа e. Возьмем случайное число, заключенное между 0 и 1. Теперь возьмем другое и прибавим его к первому. Продолжим так поступать, накапливая случайные числа. Сколько в среднем случайных чисел потребуется, чтобы сумма оказалась больше, чем 1? Ответ: 2,71828….
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.