» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Изображенные на рисунке 21.7 двойные спирали пересекают положительную часть вещественной оси последовательно все далее на восток — в точках 2,3078382, 6,1655995 и 13,4960622. Если бы мы проводили вычисления для числа Бейса-Хадсона, то двойная спираль пересекла бы вещественную ось при гораздо большем значении, определяемом числом, которое начинается как 325 771 513 660 и далее содержит еще 144 цифры до запятой. Спирали при этом невообразимо широкие, но, несмотря на это, все равно сходятся к πi и −πi. Это означает, что верхняя и нижняя спирали в сильной степени накладываются друг на друга — настолько сильно, что на рисунке их невозможно было бы различить. А критическая прямая, испещренная сидящими на ней нулями (если ГР верна!), колоссально растянута. Тогда на рисунке, аналогичном рисунку 21.3, в центре была бы значительно большая дыра — хотя все равно с центром в πi, — а спираль триллионы раз наматывалась бы между двумя последовательными нулями с малыми номерами, весьма эффективно разбрасывая их координаты по комплексной плоскости, так что вещественные части колебались бы между чудовищно большими отрицательными и чудовищно большими положительными числами. И все это относится только к первым из 639 строк в таблице для вычисления π(число Бейса-Хадсона). Вторичные члены и правда разошлись не на шутку.

Во всех вычислениях, проводившихся в данной главе, предполагалось (о чем мы время от времени напоминали), что ГР верна. Если она не верна, то наши изящные окружности и спирали представляют собой не более чем приближение, а где-то на большой высоте вдоль критической прямой — для значений ρ где-то далеко-далеко в той бесконечной сумме по вторичным членам — логика нашего рассмотрения рассыпается. В теории, касающейся остаточного члена, ГР занимает центральное место.


X.

Мы достигли главной цели, поставленной перед математической частью этой книги, — показать глубокую связь между распределением простых чисел, воплощенным в функции π(x), и нетривиальными нулями дзета-функции, которые дают значительный (а по теореме Литлвуда — временами и доминантный) вклад в разность между π(x) и Li(x), т.е., другими словами, в остаточный член в ТРПЧ.

Все это открылось нам в блестящей работе Бернхарда Римана 1859 года. Сегодня, конечно, мы знаем намного больше, чем было известно в 1859 году. Однако великая головоломка, впервые сформулированная в той работе, по-прежнему остается нерешенной — она противостоит атакам лучших умов планеты так же твердо, как когда Риман писал о своих «недолгих бесплодных попытках» доказать ее в далекие времена, когда аналитическая теория чисел только-только родилась. Каковы же перспективы на сегодняшний день, когда усилия расколоть орешек ГР прилагаются уже пятнадцатое десятилетие?

Глава 22. Она или верна, или нет

I.

Можно находить известное удовлетворение в наличии некоторой симметрии, выражающейся в том, что после стодвадцатилетнего пребывания среди математиков Гипотеза Римана (ГР) привлекла внимание и физиков. Как отмечалось в главе 10.i, сам Риман в большой степени обладал воображением, присущим ученому-физику. «Четыре из девяти работ, которые он успел сам опубликовать, относятся к физике» (Лаугвитц). Кроме того, как мне напомнила специалист по теории чисел Ульрике Форхауер[202], во времена Римана деление на математиков и физиков было не слишком отчетливым. А незадолго до того оно не проводилось вовсе.

Гаусс был первоклассным физиком в той же мере, что и первоклассным математиком, и его немало озадачила бы идея рассматривать эти две дисциплины по отдельности.

Джонатан Китинг[203] рассказывает следующую историю — на мой взгляд, имеющую легкий оттенок сверхъестественного:

Я отдыхал в горах Гарца вместе с несколькими коллегами. Двое из нас решили, что стоит проехать 30 миль, отделявших нас от Геттингена, чтобы взглянуть на черновики Римана, хранящиеся там в библиотеке. Лично мне было интересно посмотреть на заметки, относящиеся примерно ко времени написания работы 1859 года о дзета-функции.

Но мой коллега — прикладной математик, которого не занимала теория чисел, интересовался совершенно другой работой Римана, имеющей отношение к возмущениям. Представим себе большую каплю газа в пустом пространстве, удерживаемую в одно целое гравитационным притяжением между частицами этого газа. Что будет, если по ней хорошенько ударить? Вообще-то могут случиться две основные вещи: капля может разлететься на части, а может начать вибрировать с некоторой частотой. Все зависит от величины, направления и места приложения удара, а также формы и размера исходной капли и т.д.

Мы добрались до библиотеки, и я попросил, чтобы мне показали заметки по теории чисел, а мой коллега — по теории возмущений. Библиотекарь что-то проверила, а потом вернулась и сказала, что нам обоим нужна одна и та же подшивка черновиков Римана. Он работал над этими двумя задачами одновременно.

Разумеется, добавляет Джонатан, в распоряжении Римана не было операторной алгебры XX столетия, которая помогла бы ему в задаче о возмущениях и дала бы ему все возможные частоты вибраций в виде спектра собственных значений. Ему приходилось продираться сквозь дифференциальные уравнения, создавая специально для своих целей некоторый зачаток теории операторов. И все же трудно поверить, что ум столь острый и столь проницательный, как у Римана, не заметил бы аналогии между нулями дзета-функции, нанизанными на критическую прямую, и спектром частот в теории возмущений — аналогии, которая при столь драматических обстоятельствах высветилась за чашкой вечернего чая в Фалд-Холл 113 лет спустя!


II.

Мне довелось услышать этот рассказ Китинга в Институте Куранта при Нью-Йоркском университете в начале лета 2002 года. Поводом была четырехдневная серия лекций и дискуссий, организованная Американским математическим институтом (АМИ). Называлось все это мероприятие «Рабочее совещание о дзета-функциях и связанных с ними гипотезах Римана».

На эту конференцию были приглашены многие знаменитости. Показался и сам Атле Сельберг, нисколько не потерявший прежнюю остроту ума в свои 84 года. (В ходе самого первого выступления он поддел Питера Сарнака по поводу одного факта из истории математики. Во время обеденного перерыва я отправился в великолепную библиотеку Курантовского института и проверил, как оно на самом деле. Сельберг оказался прав.) Присутствовали многие из тех, чьи имена мы упоминали в предшествующих главах, включая обоих открывателей закона Монтгомери-Одлыжко. Среди других участников был нынешняя математическая супер-звезда Эндрю Уайлс, ставший знаменитым после того, как доказал Последнюю теорему Ферма, Хэролд Эдвардс, автор несколько раз упоминавшейся самой надежной книги о дзета-функции, и Дэниел Бамп — одно из двух имен, связанных с самым неординарным на слух из всех результатов, имеющих отношение к ГР, — теоремой Бампа-Нг.[204]

В последние годы АМИ превратился в значительную силу, направленную на штурм ГР. Конференция в Курантовском институте была третьей из спонсировавшихся АМИ конференций по проблемам, связанным с ГР. Первая состоялась в университете штата; Вашингтон в Сиэтле в августе 1996 года и была приурочена к 100-летию доказательства Теоремы о распределении простых чисел, данного Адамаром и де ля Валле Пуссеном. Вторая проводилась в 1998 году в Институте Эрвина Шредингера в Вене. В целом АМИ вовсе не ограничивает свою деятельность исследованиями Гипотезы Римана — ни даже просто теорией чисел. Например, недавно АМИ поддержал проект по исследованиям в области общей теории относительности. Но в отношении ГР они сделали очень много, чтобы собрать вместе исследователей из различных областей, развивающих различные, уже упоминавшиеся нами подходы: алгебраический, аналитический, вычислительный и физический.

АМИ был основан в 1994 году Джеральдом Александерсоном — крупной фигурой в американской математике (кстати, Александерсон — автор очень хорошей книги о Джордже Пойа) и Джоном Фраем — калифорнийским бизнесменом. Фрай происходит из семьи предпринимателей. Его родителям принадлежала пользующаяся успехом сеть супермаркетов в Калифорнии. Джон еще в юности влюбился в математику и в 1970-х годах учился математике в университете Санта-Клары, где в то время работал Александерсон. После окончания университета Джону пришлось решать, продолжать ли семейную традицию в бизнесе или поступать в аспирантуру. Джон сделал выбор в пользу бизнеса и вместе с двумя братьями основал сеть магазинов электроники (Fry's Electronics), сначала только в Калифорнии, а в последнее время выросшей до масштабов всей страны.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.