» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.


Авторские права

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь можно скачать бесплатно "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Рейтинг:
Название:
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Издательство:
Астрель: CORPUS
Год:
2010
ISBN:
978-5-271-25422-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.



Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.






Вот, стало быть, перед нами число x, являющееся вещественным. (Окончательная цель всего упражнения состоит в том, чтобы получить формулу для функции π(x), а она осмысленна только для вещественных чисел и даже, честно говоря, для натуральных; правда, мы изменили обозначения от N к x, чтобы использовать средства математического анализа.) С этим x мы делаем такое: возводим его в степень ρ, представляющую собой комплексное число, причем если Гипотеза Римана верна, то комплексное число вида 1/2 + ti (где t — некоторое вещественное число). Это действие само по себе заслуживает обсуждения.

При возведении вещественного числа x в комплексную степень а + bi правила комплексной арифметики предписывают следующее. Модуль результата — т.е. расстояние до нуля, измеряемое по прямой, — есть xa. Буква b на модуль никак не влияет. Зато фаза результата — насколько он повернут и в каком секторе комплексной плоскости лежит — зависит от x и b, но a на фазу не влияет.

При возведении вещественного числа x в степень 1/2 + ti, таким образом, модуль результата есть x в степени 1/2, т.е. √x. Фаза при этом может оказаться какой угодно — результат может угодить в любой сектор комплексной плоскости, при условии только, что расстояние от нуля равно √x. Иными словами, если при заданном x вычислять значения выражения для множества различных нулей ρ дзета-функции, то получаемые числа будут разбросаны по окружности радиуса √x в комплексной плоскости с центром в нуле (при условии, что ГР верна!).

На рисунке 21.2 отмечены точки, представляющие собой результат возведения числа 20 в степень, определяемую первым, вторым, третьим, …, двадцатым нулем дзета-функции. Видно, что результаты разбросаны по окружности радиуса √20 (что равно 4,47213…) в комплексной плоскости, причем без особого порядка. Это происходит потому, что функция 20s отображает критическую прямую в окружность радиуса √20 таким образом, что критическая прямая (вместе со всеми нанесенными на нее нулями дзета-функции) наматывается и наматывается на эту окружность, делая это бесконечное число раз. На математическом языке данная окружность в плоскости значений задается как 20критическая прямая.

Рисунок 21.2. Плоскость значений для функции w = 20z. Показаны значения w для первых двадцати нетривиальных нулей дзета-функции.

Представим себе, что наш приятель муравей Арг топает на север по критической прямой в плоскости аргумента, а на его приборчике выставлена функция 20s; тогда его брат-близнец, муравей Знач, отслеживая соответствующие значения в плоскости значений, нарезает круги по нашей окружности. Он продвигается против часовой стрелки, и к тому моменту, как муравей Арг доберется до первого нуля дзета-функции, муравей Знач одолеет уже почти три четверти своего седьмого круга.[197]


V.

А теперь мы найдем, одно за одним, значения функции Li во всех этих точках — во всем бесконечном числе этих точек. К сожалению, это комплексные числа, а мы определили функцию Li только для вещественных чисел — как площадь под кривой. Имеется ли способ определить Li также и для комплексных чисел? Что из себя представляют интегралы для комплексных чисел? Да, способ определить эту функцию есть; и, кроме того, да, существует способ интегрировать, когда в этом деле участвуют комплексные числа. Интегрирование на самом деле представляет собой один из важнейших элементов комплексного анализа, объект самых прекрасных и мощных теорем во всем этом разделе. Не вдаваясь в подробности, я скажу только, что, да, функция Li(z) определена[198] для комплексных чисел z.

На рисунке 21.3 показано, куда функция Li отображает первые 10 точек, изображенных на рисунке 21.2. Другими словами, (точнее, ее отрезок от 1/2 + 14i до 1/2 + 50i). Как видно, эта функция отображает критическую прямую в спираль, идущую против часовой стрелки и приближающуюся к числу πi по мере того, как аргумент взбирается вверх по критической прямой. Там, где функция 20z бесконечно много раз наматывала и наматывала критическую прямую на окружность радиуса √20, применение функции Li разматывает ее в изящную спираль; на ней по-прежнему нарисованы точки, изображающие нули.

Рисунок 21.3. Функция Li(20z) для отрезка критической прямой.


VI.

Теперь примемся за знак сигмы, где надо суммировать эти точки (каждая из которых — просто комплексное число) по всем возможным нетривиальным нулям дзета-функции. Для этого сначала вспомним один момент, который мы до сих пор практически игнорировали. Для каждого нетривиального нуля, расположенного на северной половине критической прямой, имеется соответствующий нуль на ее южной части. Если, например, 1/2 + 14,134725i — нуль дзета-функции, то нулем должно быть и число 1/2 − 14,134725i. На чисто математическом языке можно сказать, что если z — нуль, то и его комплексное сопряжение z' также есть нуль. (Мы помним, что z' произносится как «зет-с-чертой».{2} Сейчас может оказаться нелишним взглянуть на рисунок 11.2 и освежить в памяти основные факты о комплексных числах.)

При выполнении суммирования южная часть критической полосы играет ключевую роль. На рисунках 21.2 и 21.3 были показаны лишь первые несколько нулей вдоль северной половины критической прямой. Для создания более полной картины, включающей и южную половину этой прямой, в самой левой части рисунка 21.4 показана плоскость комплексных чисел с отмеченной критической полосой от 1/2 − 15i до 1/2 + 15i. Этого достаточно, чтобы был виден первый нуль при 1/2 + 14,134725i, а также его комплексное сопряжение 1/2 − 14,134725i. Они отмечены буквами ρ и ρ'.


Рисунок 21.4. Критическая прямая, продолженная до первой пары нетривиальных нулей, и ее отображение сначала с помощью функции 20z, а затем с помощью функции Li(20z).

Рассматривая эту плоскость как плоскость аргумента для функции 20z, мы получаем на средней части рисунка 21.4 картинку типа «сюда» в плоскости значений — окружность радиуса √20, где, как и на рисунке 21.2, отмечено 20ρ, а наряду с этим отмечено еще и 20ρ'. Заметим, что, когда аргументы комплексно сопряжены друг другу, сопряжены и значения функции. Такое происходит не со всеми функциями, но, по счастью, происходит с функцией 20z. Если мы применим функцию Li, на этот раз используя в качестве ее плоскости аргумента среднюю часть рисунка 21.4, то мы увидим, что критическая прямая, которая намоталась на эту окружность бесконечное число раз под действием функции 20z, теперь разматывается в симпатичную двойную спираль в правой части рисунка. (Рисунок 21.3 представлял собой «наезд камеры» на верхнюю часть этой спирали.) И по-прежнему, когда аргументы комплексно сопряжены друг другу, сопряжены и значения.

Осталось заметить еще только одну вещь перед тем, как мы приступим к сумме ∑ρLi(20ρ). Показанная спираль — что лучше всего видно из рисунка 21.3 — стремится к точке своего назначения не слишком быстро. Скорость, с которой она сходится, по сути дела гармоническая: если представить себе, что муравей Арг шагает на север по критической прямой, а на его приборчике выставлена функция Li(20ρ), то муравей Знач будет двигаться по спирали, постепенно приближаясь к точке πi — приближаясь на расстояние, обратно пропорциональное высоте, на которую забрался муравей Арг. Если последний вскарабкался на высоту T, то муравей Знач будет находиться от точки πi примерно на расстоянии, пропорциональном 1/T.

Имея это в виду, мы теперь готовы взяться за сумму ∑ρLi(20ρ). Сложению подлежат комплексные числа, соответствующие всем нашим точкам на спирали, изображенной на рисунке 21.3, а также их комплексно сопряженным точкам на соответствующей южной части спирали. Поскольку для каждой точки северной спирали имеется ее зеркальное отображение на южной, все мнимые части сократят друг друга: для каждого a + bi найдется соответствующее  bi, так что при их сложении получится просто 2a. Ну и отлично, потому что J(x) — вещественное число, и решительно не годится иметь мнимые слагаемые в правой части выражения (21.1)! Это и вправду хорошая новость, потому что она означает, что складывать надо только вещественные (т.е. западно-восточные) части точек на рисунке 21.3. Вклад южного полушария сводится просто к тому, что ответ удваивается, т.е. (a + bi) + (a − bi) = 2а.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Джон Дербишир

Джон Дербишир - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."

Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.