Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Описание и краткое содержание "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать бесплатно онлайн.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
Джон Фрай и Джерри Александерсон не теряли друг друга из виду. Их общим интересом было коллекционирование редких математических книг и оригинальных статей. В начале 1990-х годов они загорелись идеей основать математическую библиотеку, в которой хранилось бы их собрание. Это постепенно развилось в план устройства математического института. Они привлекли еще Брайана Конри — одногруппника Джона в университете Санта-Клары, получившего относительную известность в области теории чисел и чрезвычайно успешно руководившего факультетом в университете штата Оклахома.
В течение нескольких первых лет своего существования АМИ почти целиком финансировался из личных пожертвований Джона Фрая, доходивших до 300 000 долларов в год. Это был тот самый случай, когда добрые дела творятся втихую. Джон — сдержанный и склонный к уединению человек, не выставляющий напоказ того, что он делает. Когда я впервые услышал об АМИ, я принялся искать портрет Фрая в Интернете; но портретов там не нашлось. В своей собственной среде, однако, т.е. среди математиков и людей, любящих математику, до Джона добраться несложно. В ходе конференции в Курантовском институте в Нью-Йорке он пригласил нескольких человек, включая и меня, на ланч. Высокий живой человек с лицом, которое загорается, когда он начинает говорить о математике. Я хотел осторожно поинтересоваться, не приходилось ли ему жалеть о своем решении пойти в бизнес, а не по академической стезе, но все-таки решил, что вопрос не слишком уместный, и я не воспользовался представившейся мне возможностью.
Побывав за несколько дней до конференции в Курантовском институте в штаб-квартире АМИ, я выяснил, что она располагается во вполне рядовых офисных помещениях, соединенных с магазином Фрая в Пало-Альто в Калифорнии. Однако в 2001 году АМИ подал заявку в National Science Foundation[205] на поддержку финансирования центра для конференций на зеленом 200-акровом участке к югу от Сан-Хосе в Калифорнии. Средства были выделены, и исследовательские программы будут осуществляться по новому адресу с декабря 2002 года.
Начало другому предприятию, финансируемому, подобно АМИ, из частных источников, было положено на Восточном побережье Соединенных Штатов в 1998 году, когда бостонский бизнесмен Лэндон Т. Клей и гарвардский математик Артур Джаффе организовали Математический институт Клея (МИК). Если первое крупное мероприятие, проведенное АМИ, было посвящено столетию Теоремы о распределении простых чисел, то в МИК решили отметить годовщину доклада Гильберта на Парижском конгрессе 1900 года.
Для этого в мае 2000 года МИК организовал двухдневное мероприятие, в Коллеж де Франс в Париже, в ходе которого было объявлено о создании фонда в семь миллионов долларов — по миллиону в качестве награды за решение каждой из семи великих математических проблем. Естественно, ГР была включена и значилась как проблема номер 4. (Выбранный порядок определялся длиной фразы, в которой проблема формулируется, чтобы объявление об установленных наградах выглядело приятнее.) Не знаю, как там с шестью остальными проблемами, но миллион долларов нельзя считать значительным дополнительным стимулом, чтобы доказать или опровергнуть Гипотезу. К началу XXI века она твердо заняла свое место в качестве нерешенной проблемы в математике, так что любой, кто бы ни решил ее, в довершение к непреходящей славе получил бы еще и финансовую выгоду в размере, намного превышающем миллион долларов, за одни только лекции, интервью и авторские отчисления.[206]
III.
Так каковы же перспективы доказательства или опровержения ГР? Высказывать прогнозы по предметам подобного рода — прекрасный способ выставить себя дураком. Это остается верным даже и в том случае, если вы великий математик, каковым я, понятно, не являюсь. Семьдесят пять лет назад, читая лекцию нематематической аудитории, Давид Гильберт расположил три задачи в порядке возрастания сложности.
• Гипотеза Римана.
• Последняя теорема Ферма.
• «Седьмая» — другими словами, проблема номер 7 в списке из 23 проблем, которые Гильберт огласил на конгрессе 1900 года. В явной формулировке: если a и b — алгебраические числа, то ab трансцендентно (см. главу 11.ii), за исключением тех случаев, когда это не так по очевидным и тривиальным причинам.
Гильберт утверждал, что ГР будет решена в течение его жизни, а Последняя теорема Ферма будет доказана в течение жизни младшего поколения из тех, кто присутствовал в аудитории, но «никто в этом зале не доживет до доказательства Седьмой». На самом деле Седьмая проблема была доказана менее 10 лет назад Александром Гельфондом и Теодором Шнайдером, которые работали независимо. Насчет Последней теоремы Ферма Гильберт был с некоторой натяжкой прав — ее доказал Эндрю Уайлс в 1994 году, когда младшим из слушателей Гильберта должно было стукнуть девяносто с небольшим. Однако он радикально ошибся насчет ГР. Если ГР сыграет и со мной злую шутку — если все то, что я собираюсь сказать, обесценится и «умножится на нуль» из-за того, что доказательство ГР появится в тот момент, когда эта книга будет лежать уже в переплетном цехе, — если такое случится, то я, по крайней мере, буду утешаться тем, что окажусь в неплохой компании.
Итак, я подставляю шею и говорю, что, по моему мнению, доказательство ГР лежит где-то далеко за границами того, что нам сегодня доступно. Обзор новейшей истории попыток доказательства Гипотезы Римана несколько напоминает изложение хода затяжной и тяжелой войны. Случаются внезапные наступления, застающие неприятеля врасплох, масштабные битвы и перемены судьбы, от которых сжимается сердце. Наступают и временные затишья — периоды истощения, когда обе измученных войной стороны почти ничего не предпринимают, но совершают вылазки малыми силами для проверки оборонительных рубежей противника. Случаются и прорывы, за которыми следует всплеск энтузиазма, но также бывают и патовые ситуации, сопровождаемые периодом апатии.
Мое впечатление о состоянии дел на данный момент (середина 2002 года) — хотя надо оговориться, что это лишь впечатление наблюдателя, который сам в бою не участвует, — таково, что исследователи находятся в патовой ситуации. В битве наступило затишье. Мощнейший взрыв интереса, вызванный доказательством гипотез Вейля, предложенным Делинем в 1973 году, и продвижениями Монтгомери-Одлыжко в период с 1972 по 1987 год, как мне кажется, исчерпался.
В мае 2002 года я провел три дня в офисе АМИ в Пало-Альто, занимаясь тем, что просматривал видеозапись конференции 1996 года в Сиэтле. А через месяц после этого я был на рабочем совещании в Институте Куранта. Вычитание числа 1996 из числа 2002 дает шесть лет. «Вычитание» содержания конференции в Сиэтле из курантовского совещания показывает, что математики, собравшиеся в Институте Куранта, смогли показать не так много нового. Вообще-то это не слишком неожиданное заявление, и я никоим образом не придаю ему пренебрежительного или уничижительного оттенка. Деятельность, о которой идет речь, исключительно трудна. Прогресс в ней дается не быстро, а шесть лет — срок в истории математики небольшой. (Доказательство Последней теоремы Ферма потребовало 357 лет!) И кроме того, на совещании в Курантовском институте были яркие доклады молодых математиков, таких как Иван Фесенко.
Но основное впечатление все же свелось к тому, что наблюдается патовая ситуация. Как будто бы ГР представляла собой гору, на которую совершается восхождение, но с какого направления к ней ни подбираешься, рано или поздно застреваешь у края широкой и бездонной расселины. Я сбился со счета, пытаясь прикинуть, сколько раз, будь то в 1996 или в 2002 году, докладчик заканчивал свое выступление, буквально разводя руками: «Это, конечно, очень важное достижение, однако неясно, удастся ли перекинуть отсюда мостик к доказательству классической Гипотезы Римана…»
Сэр Майкл Берри, который знает толк в словах, ввел в обращение концепцию «кларитона», который он определяет как «элементарную частицу внезапного понимания».[207] В области ГР в настоящее время ощущается дефицит кларитонов.
Эндрю Одлыжко: «Сказано, что, кто бы ни доказал истинность Теоремы о распределении простых чисел, тот достигнет бессмертия. И верно: и Адамар, и де ля Валле Пуссен дожили до девяноста с лишним лет. Возможно, ГР не верна; но если кто нибудь сумеет доказать ее ложность — найти нуль вне критической прямой, — то он умрет на месте и о его результате никто никогда не узнает».
IV.
Если оставить в стороне вопрос о поиске доказательства, то каковы ощущения математиков насчет ГР? Что им подсказывает их интуиция? Верна ГР или нет? Что они по этому поводу думают? Я специально спрашивал всех математиков, с которыми удавалось поговорить, верят ли они в справедливость Гипотезы. Ответы образовали широкий спектр с довольно разнообразным набором собственных значений.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Книги похожие на "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Отзывы читателей о книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.", комментарии и мнения людей о произведении.