» » » » Жиль Делёз - Складка. Лейбниц и барокко


Авторские права

Жиль Делёз - Складка. Лейбниц и барокко

Здесь можно скачать бесплатно "Жиль Делёз - Складка. Лейбниц и барокко" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Логос, год 1998. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Складка. Лейбниц и барокко
Автор:
Издательство:
Логос
Жанр:
Год:
1998
ISBN:
5-8163-003-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Складка. Лейбниц и барокко"

Описание и краткое содержание "Складка. Лейбниц и барокко" читать бесплатно онлайн.



Похоже, наиболее эффективным чтение этой книги окажется для математиков, особенно специалистов по топологии. Книга перенасыщена математическими аллюзиями и многочисленными вариациями на тему пространственных преобразований. Можно без особых натяжек сказать, что книга Делеза посвящена барочной математике, а именно дифференциальному исчислению, которое изобрел Лейбниц. Именно лейбницевский, а никак не ньютоновский, вариант исчисления бесконечно малых проникнут совершенно особым барочным духом. Барокко толкуется Делезом как некая оперативная функция, или характерная черта, состоящая в беспрестанном производстве складок, в их нагромождении, разрастании, трансформации, в их устремленности в бесконечность. Образуемая таким образом бесконечная складка (сразу напрашивается образ разросшейся до гигантских размеров коры головного мозга) имеет как бы две стороны или два этажа — складки материи и сгибы в душе. Тяжелые массы материальных складок громоздятся под действием внешних сил, а затем организуются в стройную систему согласно внутренним изгибам души. Декарт использовал совершенно иной принцип монтажа: для него материя характеризуется прямолинейной протяженностью, а душа — "прямизной", выправляющей любые душевные "наклонности".






8 Об этом критерии, или образце возвышения до бесконечности, а также об условии «ни целого, ни частей», ср. «Новые опыты…», II, гл. 17, § 2-16. Кроме того, ср. «Размышления о познании, истине и идеях». В обоих текстах в качестве изначальной бесконечной формы признается абсолютная протяженность, «extensio absoluta». Но она берется в весьма специфичном смысле, поскольку речь идет не о пространстве, каковое является относительным, и не о собственно лейбницианской протяженности, вступающей в отношения с целым и частями: речь идет о безмерности, т. е. об «идее абсолюта по отношению к пространству».

{77}

личие является формальным и не влечет за собой никаких онтологических различий между существами, которым каждая из них себя атрибуирует: все они атрибуируются одному и тому же

— онтологически единому и формально многообразному — Существу.9 Уже здесь реальное различение не влечет за собой отделимости. Как выразился Кант, онтологическое доказательство следует от совокупности всех возможностей к индивидуальности существа, существующего с необходимостью: да/l. Самотождественности суть класс существ, но класс, состоящий из одного члена. Мы обнаруживаем тут правило антецедентности, поскольку абсолютные формы предшествуют Богу, как первичные элементы его возможности, хотя Бог предшествует им «реально» и «актуально».

Как же перейти от Самотождественных понятий к Определимым? Самотождественные понятия — это понятия абсолютно простые и изначальные: А, В…, — каковые метафизически «составляют» единственное в своем роде Существо, — AB… Но метафизическое «сложение» не следует смешивать с логической деривацией. Определимые понятия являются производными: они могут быть и простыми, будучи первыми в своей серии, но они всегда предполагают как минимум два изначальных; последние определяют их, находясь в каком-либо отношении, в «узелке», или же через посредство некоей 9

О невозможности того, чтобы абсолютно простые и с необходимостью совместимые формы друг другу противоречили, ср. письмо к принцессе Елизавете от 1678 г. и, в особенности, «Есть Совершеннейшее Существо» (GPh, VII, р. 261–262). В этом последнем тексте Лейбниц утверждает, что приводимому им доказательству он обучил Спинозу. Это, пожалуй, сомнительно, — ведь оно относится и к десяти первым теоремам «Этики»: именно потому, что у атрибутов нет ничего общего, можно сказать, что они принадлежат одному и тому же Существу. Тем более, что у Спинозы и Лейбница был общий источник — Дунс Скот, продемонстрировавший, что формально различные Чтойности могут составлять одно и то же Существо (ср. Gilson, Jean Duns Scot, Vrin, p. 243–254: «Формальное различие между сущностями не препятствует онтологическому единству бесконечного»).

{78}

частицы, самой по себе простой или сложной (например, А в В). Именно так, различая уровни, Комбинаторика переходит от Самотождественных к Определимым, от изначальных понятий к производным: уровень I содержит изначальные или неопределимые Самотождественные; уровень

II — простые производные, определяемые двумя изначальными, находящимися в простом отношении; уровень III — сложные производные, определяемые тремя изначальными или одним простым изначальным и одним простым производным, находящимися в сложном отношении…10 Приведем пример, пригодный по аналогии: даже если мы не можем исходить из абсолютно изначальных понятий для дедукции наших мыслей, мы, тем не менее, всегда можем условиться об относительно изначальных для какой-либо области понятиях (они допускают существование этой области, а не «порождают» ее); так, например, первые числа являются изначальными для арифметики, ибо каждое из них делится только на само себя и на единицу, и потому им свойствен феномен самовключения. Или возьмем неопределимые аксиомы в геометрии (например, «точка», «пространство», «промежуток»…): они формируют уровень I, из которого — каждый раз путем сочетания двух изначальных понятий — образуют производный уровень II, а затем — уровень III (линия есть промежуточное пространство между двумя точками)}1 Несомненно, на уровне абсолюта переход от Самотождественных к Определимым обеспечивает сам Бог: он состоит из всех изначальных абсолютных форм, но также является первым и последним определимым, по отношению к которому все остальные определимые представляют собой произ-

10 «Общие исследования, касающиеся анализа понятий и истин» (С, р. 358–359). Об «узелке» как отношении между понятиями, определяющими какую-либо величину, ср. «О методе универсальности», С, р. 101.

11 Ср. написанную Лейбницем в молодости работу «О комбинаторном искусстве», с комментариями Кутюра, Logique de Leibniz, p. 560. Мы упростили пример с линией, который фактически относится к уровню IV.

{79}

водные. Но тем самым трудности, затрагивающие всю комбинаторику, не решаются. И Кутюра это превосходно показал: как объяснить отношения, маркируемые артиклями, предлогами, глаголами и падежами, — и возникающие на уровне II? Ведь мы исходили из абсолютных форм, взятых в их нон-отношениях. И вот, совершенно внезапно — и не только для нашего рассудка, но и для разума самого Бога — возникают отношения или «частицы». Как же из «нон-отношений» могут возникнуть отношения?

Естественно, в разуме Бога имеется много регионов. Можно сказать, что отношения возникают в регионе, который касается уже не Бога в себе самом, а возможности творения. Даже если вопрос в знании, не «где», а «как» возникают отношения, — это, во всяком случае, указывающий на что-то симптом. В действительности, барочная мысль придавала особую важность различению между многочисленными порядками бесконечного. Во-первых, если абсолютные формы составляют Бога, как бесконечное-в-себе, исключающее целое и части, — то идея творения отсылает к бесконечному другого рода, «по основанию». Именно это бесконечное-по-основанию и образует целые и части, притом, что не существует ни большего целого, ни меньшей части. Это уже не серия, но множество, в котором нет ни последнего члена, ни предела. И управляется оно уже не принципом полной тождественности, а принципом подобия или гомотетии, который сигнализирует о появлении нового класса существ. И все это можно назвать расширениями или распространениями (экстенсивностями): не только протяженность в собственном смысле слова, но и время, число, до бесконечности делимая материя, всевозможные «partes extra partes», которые в качестве таковых подчиняются принципу подобия. И каждый член серии, образующий целое для ее предыдущих членов, и часть — для последующих, определяется посредством двух или нескольких простых членов, вступающих в этой новой функции в точно указанные отношения и играющих в подобных случаях роль уже не частей, а требуемого (реквизитов), оснований или со-

{80}

ставных элементов. Так, например, в натуральном числовом ряду каждое число определяется через предшествующие, которые вступают в отношения с этой точки зрения: так 4, являющееся удвоением 2 и половиной от 8, определяется через 3 и 1. Или же в арифметическом треугольнике каждая линия как числовая последовательность является удвоением предыдущей, но определяется через степень числа 2, способствующую тому, что реквизит вступает в отношения умножения с самим собой (а реквизиты — во взаимоотношения). Этого достаточно, чтобы понять, что целое и части (как и подобие) представляют собой уже не отношения, а принципиальную формулу некоей производной бесконечности, своего рода интеллигибельную материю для всех возможных отношений: и тогда изначальные члены, не имеющие отношений сами по себе, вступают в отношения, становясь реквизитами или определяющими для производных, т. е. формообразующими элементами этой материи. Пока между изначальными понятиями не было отношений и они были попросту самовключениями, они оставались атрибутами Бога, предикатами абсолютно бесконечного Существа. Но как только мы начинаем рассматривать производную от этого Существа, бесконечность второго порядка, предикаты перестают быть атрибутами и становятся отношениями; они вступают в отношения, определяющие целые и части до бесконечности, — и сами, сообразно двоякой антецедентности, являются взаимными включениями для определяемого. Поскольку же определяющие в их взаимоотношениях каждый раз представляют собой основание для определяемого, мы уже добрались до «достаточного основания». Если бы требовалось определить отношения, можно было бы сказать, что это единство «нон-отношений» с некоей материей «целое-части». Если же принято считать, что отношения вызывают у Лейбница непреодолимые трудности, то происходит это потому, что смешивают предикаты и атрибуты: это смешение допустимо лишь на уровне абсолютно простых понятий, исключающих какие бы то ни было отношения, но становится недопустимым на уровне 81


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Складка. Лейбниц и барокко"

Книги похожие на "Складка. Лейбниц и барокко" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Жиль Делёз

Жиль Делёз - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Жиль Делёз - Складка. Лейбниц и барокко"

Отзывы читателей о книге "Складка. Лейбниц и барокко", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.