» » » » Морис Клайн - Математика. Утрата определенности.


Авторские права

Морис Клайн - Математика. Утрата определенности.

Здесь можно скачать бесплатно "Морис Клайн - Математика. Утрата определенности." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Мир, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Морис Клайн - Математика. Утрата определенности.
Рейтинг:
Название:
Математика. Утрата определенности.
Автор:
Издательство:
Мир
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Математика. Утрата определенности."

Описание и краткое содержание "Математика. Утрата определенности." читать бесплатно онлайн.



Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.






Приведем некоторые из парадоксов. Нематематическим примером парадоксов теории множеств может служить высказывание «Из всех правил имеются исключения». Само это высказывание является правилом. Следовательно, для него можно найти по крайней мере одно исключение. Но это означает, что существует правило, не имеющее ни одного исключения. Такого рода высказывания содержат ссылку на самих себя и отрицают самих себя.

Наибольшей известностью из нематематических парадоксов пользуется так называемый парадокс лжеца. Его разбирали Аристотель и многие другие логики, жившие позднее. В классическом варианте парадокса лжеца речь идет о высказывании «Это утверждение ложно». Обозначим предложение, стоящее в кавычках, через S. Если S истинно, то истинно то, что оно утверждает. Следовательно, S ложно. Если S ложно, то ложно то, что оно утверждает. Следовательно, S истинно.

Парадокс лжеца существует во многих вариантах. Например, комментируя какое-то свое высказывание, человек может заметить: «Все, что я говорю, — ложь». Является ли высказывание «Все, что я говорю, — ложь» истинным или ложным? Если человек действительно лжет, то, утверждая, что он лжет, он говорит правду, а если человек говорит правду, то, утверждая, что он лжет, он действительно лжет. В некоторых вариантах парадокса лжеца ссылка на себя менее очевидна. Так, два высказывания: «Следующее за этим утверждение ложно», «предыдущее утверждение истинно» — содержат противоречие, так как если второе утверждение истинно, то тогда заведомо ложно первое утверждение, сообщающее нам о том, что второе утверждение ложно. Если же второе утверждение, как и говорится в первом утверждении, ложно, то значит, первое утверждение ложно и, следовательно, второе утверждение должно быть истинным.

Курту Гёделю (1906-1978), величайшему логику XX в., принадлежит несколько иной вариант парадокса с противоречивыми высказываниями, 4 мая 1934 г. A произносит единственную фразу: «Любое высказывание, которое A сделает 4 мая 1934 г., ложно». Это высказывание не может быть истинным, так как утверждает о самом себе, что оно ложно. Но оно не может быть и ложным, так как, для того чтобы оно было ложным, A должен был бы высказать 4 мая 1934 г. хоть одну истину, — а A сказал в этот день лишь одну фразу.

Первые математические противоречия, чреватые серьезными неприятностями, обнаружил Бертран Рассел и сообщил о них Готлобу Фреге в 1902 г. Фреге в то время занимался подготовкой к печати второго тома «Основных законов арифметики», в котором изложил новый подход к обоснованию числовой системы. (Подробнее о развитом Фреге подходе мы расскажем в следующей главе.) Свой подход Фреге в значительной мере основывал на теории множеств, или классов, — той самой теории, где Рассел обнаружил противоречие, о котором сообщил в письме Фреге и поведал математическому миру в книге «Принципы математики» (1903). Рассел занимался изучением парадокса Кантора о множестве всех множеств — и предложил свой вариант этого парадокса.

Парадокс Рассела относится к классам. Класс книг не является книгой и поэтому не содержит самого себя, но класс идей есть идея и содержит сам себя. Каталог каталогов — каталог. Следовательно, одни классы содержат (или включают) самих себя, другие не содержат. Пусть N — класс классов, не содержащих самих себя. К какой разновидности классов принадлежит N? Если N принадлежит N, то, по определению, N не должен принадлежать N. Если же N не принадлежит N, то по определению N должен принадлежать N. Когда Рассел впервые открыл это противоречие, он решил, что трудность здесь кроется в логике, а не в самой математике. Но обнаруженное противоречие ставит под удар само понятие множества, или класса объектов, широко используемое во всей математике. По словам Гильберта, парадокс Рассела был воспринят математическим миром как катастрофа.

В 1918 г. Рассел предложил популярный вариант своей антиномии, получивший название парадокс брадобрея. Один деревенский брадобрей объявил, что он бреет всех жителей деревни, которые не бреются сами, но, разумеется, не бреет тех жителей, которые бреются сами. Брадобрей похвалялся, что в парикмахерском деле ему нет равных, но однажды задумался над вопросом, должен ли он брить самого себя. Если он не бреется сам, то первая половина его утверждения (а именно та, в которой говорится, что брадобрей бреет всех, кто не бреется сам) требует, чтобы он самого себя брил. Но если брадобрей бреется сам, то вторая половина его утверждения (та, в которой говорится, что всех тех, кто бреется сам, он не бреет), требует, чтобы он самого себя не брил. Таким образом, брадобрей оказался в безвыходном положении — он не мог ни брить себя, ни не брить.

Другой парадокс, дающий представление о тех трудностях, с которыми столкнулись математики, был впервые сформулирован в 1908 г. математиками Куртом Греллингом (1886-1941) и Леонардом Нельсоном (1882-1927). Этот парадокс относится к прилагательным, описывающим самих себя и не описывающим самих себя. Такие прилагательные, как, например, «короткий» (-ая, -ое, -ие) или «русский» (-ая, -ое, -ие) описывают самих себя, т.е. применимы к себе, в то время как прилагательные «длинный» или «французский» к себе неприменимы (ведь прилагательное «длинный» вовсе не является длинным, а прилагательное «французский», конечно, русское, а не французское). Аналогично прилагательное «многосложное» является многосложным, но прилагательное «односложное» односложным не является. Назовем прилагательные, применимые к самим себе, автологическими, а прилагательные, неприменимые к самим себе, — гетерологическими. Если прилагательное «гетерологический» гетерологично, то оно применимо к самому себе и, следовательно, автологично. Если прилагательное «гетерологический» автологично, то оно не гетерологично. Но автологичное прилагательное по определению применимо к самому себе. Следовательно, прилагательное «гетерологический» гетерологично. Таким образом, какое бы допущение мы ни приняли, оно неизменно приводит к противоречию. В символической записи парадокс Греллинга — Нельсона гласит: x гетерологичен, если x есть «не x».

В 1905 г. Жюль Ришар (1862-1956), используя тот же метод, которым Кантор доказал, что вещественных чисел больше, чем целых, изобрел еще один «парадокс». Рассуждения Ришара довольно сложны, но противоречие, к которому он приходит, в упрощенном варианте содержится в парадоксе, о котором Дж.Дж. Берри из Бодлеанской библиотеки сообщил Бертрану Расселу (Рассел опубликовал этот парадокс в 1906 г.). Парадокс Берри получил название парадокса слов. Каждое целое число допускает множество различных словесных описаний. Например, число «пять» можно задать одним словом «пять» или фразой «число, следующее за числом четыре». Рассмотрим теперь все возможные описания, состоящие не более чем из 100 букв русского алфавита. Таких описаний не больше чем 33100; поэтому существует лишь конечное множество целых чисел (не большее чем 33100), задаваемых всеми возможными описаниями.{103} Следовательно, существуют какие-то целые числа, не задаваемые описаниями, состоящими не более чем из 100 букв. Рассмотрим «наименьшее число, не задаваемое описанием, которое содержит не более ста букв». Но мы только что привели описание такого числа, содержащее менее 100 букв (оно содержит всего 65 букв).

Многие математики в начале XX в. попросту отмахивались от парадоксов, не придавая им особого значения, так как парадоксы относились к теории множеств — тогда еще новой области математики, лежащей далеко не в центре интересов математического мира. Но их оставшиеся в меньшинстве более проницательные коллеги понимали, что парадоксы затрагивают не только классическую математику, но и логику, и это их серьезно тревожило. Кое-кто пытался следовать совету, который Уильям Джеймс дал в своем «Прагматизме»: «Если вам встретится противоречие, введите более тонкое различие». Некоторые логики, начиная с Френка Пламптона Рамсея (1903-1930), пытались проводить различие между семантическими и истинными (т.е. логическими) противоречиями. «Парадокс слов», «гетерологический парадокс» и «парадокс лжеца» они относили к семантическим парадоксам, так как все эти парадоксы затрагивали такие понятия, как истинность и определяемость (или неоднозначность) того или иного словоупотребления. Предполагалось, что строгое определение таких понятий позволит разрешить семантические парадоксы. С другой стороны, парадокс Рассела, парадокс Кантора о множестве всех множеств и парадокс Бурали-Форти были отнесены к логическим противоречиям. Сам Рассел не проводил различия между семантическими и логическими противоречиями. По его мнению, все парадоксы возникают из-за одной логической ошибки, которую он назвал принципом порочного круга и описал следующим образом: «То, что содержит все множество, не должно быть элементом множества». Принцип Рассела можно сформулировать иначе: «Если для того, чтобы определить множество, необходимо использовать все множество, то определение не имеет смысла». Так в 1905 г. Рассел объяснил принцип порочного круга. В 1906 г. его объяснение принял Пуанкаре, предложивший специальный термин «непредикативное определение» (определение, в котором некий объект задается (или описывается) через класс объектов, содержащий определяемый объект). Такие определения незаконны.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Математика. Утрата определенности."

Книги похожие на "Математика. Утрата определенности." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Морис Клайн

Морис Клайн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Морис Клайн - Математика. Утрата определенности."

Отзывы читателей о книге "Математика. Утрата определенности.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.