Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Дискретная математика. Краткий курс. Учебное пособие"
Описание и краткое содержание "Дискретная математика. Краткий курс. Учебное пособие" читать бесплатно онлайн.
В пособии изложены основные разделы современной дискретной математики. Рассматриваются вопросы, связанные с теорией множеств, теорией отношений, теорией графов и логикой. Материал построен на основе курса лекций, читаемого автором в технических вузах. В каждой главе рассмотрено большое число задач с подробными решениями и примерами, что позволяет эффективно и быстро осваивать изучаемую тему. Для студентов, обучающихся по специальности «Прикладная математика», а также для студентов технических и экономических факультетов, изучающих курс «Дискретная математика» и компьютерные технологии. Представляет интерес для тех, кто связан с использованием методов дискретной математики.
Пусть теперь В класс подмножеств S, который содержит элемент а и два других элемента из S. Тогда
В = {{a, b, c}, {a, b, d}, {a, c, d}]. Элементами В являются множества {a, b, c}, {a, b, d} и {a, c, d}]. Поэтому В является подклассом класса А.
Для данного множества S можно говорить о классе всех подмножеств S. Этот класс называют степенным множествомS и обозначают 2S. Если n(S) – число элементов множества S, то число элементов степенного множества n(2S) представляет собой степень 2 и равно n(2S) = 2 n(S). Например, если S = {a, b, c}, то степенное множество
2S = [Ø,{a}, {b}, {c}, {a, b},{a, c}, {b, c}, S].
Заметим, что пустое множество Ø принадлежит к 2S, так как пустое множество является подмножеством S и само S принадлежит 2S, поэтому число элементов n(2S) = 23 = 8.
Рассмотрим теперь еще одно важное понятие, которое называется разбиением множества S. Разбиением множества S называется семейство {Аi} непустых подмножеств S, для которых:
1) каждый элемент х из S принадлежит к одному из подмножеств Аi;
2) подмножества из {Аi} взаимно не пересекаются, т. е. если
Аi≠ Аj, тогда Аi ∩ Аj = Ø.
Подмножества в разбиении иногда называют клетками или блоками. На рис. 1.8 представлена диаграмма Венна, изображающая разбиение прямоугольного множества точек S на пять клеток А1, А2, А3, А4, А5.
Рис. 1.8
Фундаментальные произведения также представляют собой разбиение универсального множества.
Операции объединения и пересечения могут быть распространены на любое количество множеств. Объединение состоит из таких элементов, которые принадлежат по крайней мере к одному из множеств, а пересечение из таких элементов, которые принадлежат ко всем множествам.
1.8. Алгебра множеств и двойственность
Абстрактная алгебра занимается изучением операций, производимых над некоторыми элементами. К настоящему времени идеи абстрактной алгебры используются не только для математических методов, но и позволяют получать практические результаты. Операции объединения, пересечения и дополнения, производимые над множествами, удовлетворят определенным законам (или тождествам) и образуют алгебру множеств. Поскольку числовая алгебра появилась раньше, то возникает вопрос, какая из операций (пересечение или объединение) «похожа» на операцию сложения чисел и какая – на операцию умножения. Ответить на этот вопрос едва ли возможно. Для чисел, например, выполняется только дистрибутивность умножения относительно сложения, а в алгебре множеств рассматривают два закона дистрибутивности: пересечения относительно объединения и объединения относительно пересечения.
Важным при выполнении операций является их приоритет. Сначала выполняется операция дополнения, затем пересечения и затем объединения.
Множества удовлетворяют следующим законам (или тождествам):
Принцип двойственности алгебры множеств
Нетрудно заметить, что тождества в таблице располагаются парами, например первое тождество A ∩ B = B ∩ A имеет парное A ∪ B = B ∪ A, и это выполняется для всех остальных законов алгебры множеств.
Принцип двойственности состоит в том, что если верно какое-либо тождество, то тождество, полученное из него путем замены каждой из операций ∩, ∪, а также U и Ø на операции ∪, ∩, Ø и U, соответственно, будет также верно. Поэтому у любого тождества есть его «двойник», отличающийся тем, что у него каждая операция замена на парную ей (объединение на пересечение, а пересечение на объединение) и при этом пустое множество заменяется на универсальное, а универсальное на пустое. Принцип двойственности очень важен, поскольку если доказана истинность какого-либо выражения, то истинность двойственного ему можно не доказывать – оно будет истинно вследствие данного принципа. Например, для верного тождества
A = (A ∩ BC ∩ CC) ∪ (A ∩ (B ∪ C))
двойственное ему будет также верным тождеством
A = (A ∪ BC ∪ CC) ∩ (A ∪ (B ∩ C)).
Или для верного тождества
A = (A ∩ U) ∪ (A ∩ B ∩ C),
двойственное ему тождество A = (A ∪ Ø) ∩ (A ∪ B ∪ C).
1.9. Доказательство тождеств с множествами
Для доказательства равенства тождеств обычно используются четыре метода:
1) элементный метод;
2) диаграммы Венна;
3) табличный метод;
4) алгебраический метод.
Элементный метод основан на том, что для произвольно выбранного элемента x из множества, заданного в левой части тождества, доказывается, что этот элемент принадлежит и множеству правой части этого тождества. Затем выбирается произвольный элемент из правой части и показывается, что он входит и в левую часть. Вместе это доказывает, что оба множества состоят из одних и тех же элементов.
Докажем далее законы алгебры множеств.
Доказательство коммутативности (или сочетательного свойства) операций объединения и пересечения самоочевидно, поскольку ни в определении пересечения, ни в определении объединения ничего не говорится о порядке подмножеств.
Ассоциативность (или сочетательный закон) также просто доказывается. Покажем, что (A ∩ B) ∩ C ⊆ A ∩ (B ∩ C). Если x ∈ (A ∩ B) ∩ C, то x ∈ (A ∩ B) и x ∈ С, из x ∈ (A ∩ B) следует, что x ∈ А и x ∈ B, т. е. x принадлежит всем трем множествам A, B и C. Следовательно, x ∈ (B ∩ C) и x ∈ A ∩ (B ∩ C). Обратное включение показывается аналогично, поскольку множество в правой части тождества также образовано из элементов (и только из таких), которые входят в каждое из множеств A, B и C. Ассоциативность для операции объединения следует из того, что элементы в множестве левой части тождества и элементы в множестве правой части состоят из таких и только таких элементов, которые принадлежат по крайней мере одному из подмножеств A, B и C.
Идемпотентность означает, что если x ∈ A ∩ A, то, значит, x принадлежит пересечению множества A с самим собой, т. е. x принадлежит самому множеству A. Если элемент x ∈ A ∪ A, то x принадлежит объединению множества A с самим собой, т. е. и в этом случае он принадлежит только множеству A.
Докажем дистрибутивность пересечения относительно объединения.
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
Необходимо убедиться, что множества, стоящие в левой и правой частях этого тождества, состоят из одних и тех же элементов. Сначала покажем, что множество левой части включается в множество правой части.
A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).
Пусть x ∈ A ∩ (B ∪ C). Тогда по определению операции пересечения x ∈ A и x ∈ (B ∪ C). Если x ∈ B, то тогда x принадлежит и A и B и поэтому он принадлежит и их пересечению x ∈ (A ∩ B). Но поскольку x принадлежит объединению B и C, то он может принадлежать не только B, но и С и даже обеим этим множествам. Если x ∈ С, тогда он принадлежит и пересечению А и С, т. е. x ∈ (A ∩ C). Но отсюда можно видеть, что в любом из этих случаев x принадлежит к какому-то из множеств: либо (A ∩ B), либо (A ∩ C), и тогда в соответствии с определением операции объединения x принадлежит и объединению этих множеств x ∈ (A ∩ B) ∪ (A ∩ C) и поэтому A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Дискретная математика. Краткий курс. Учебное пособие"
Книги похожие на "Дискретная математика. Краткий курс. Учебное пособие" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие"
Отзывы читателей о книге "Дискретная математика. Краткий курс. Учебное пособие", комментарии и мнения людей о произведении.