Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Евклидово окно. История геометрии от параллельных прямых до гиперпространства"
Описание и краткое содержание "Евклидово окно. История геометрии от параллельных прямых до гиперпространства" читать бесплатно онлайн.
Мы привыкли воспринимать как должное два важнейших природных умений человека – воображение и абстрактное мышление, а зря: «Евклидово окно» рассказывает нам, как происходила эволюция нашей способности представлять то, чего мы не видим воочию.
Эта книга – восхитительная смесь научного авторитетного труда и веселого балагурства, она превращает классические теории и понятия геометрии в доступные, поражающие воображение истории.
Спасибо Млодинову: не нужно быть математиком или физиком, чтобы постичь загадки пространства и поразиться великолепию мироустройства.
Тем временем в нью-йоркской головной конторе ее начальники в костюмах анализируют ход своей мировой войны с сухостью кожи, применяя методы, изобретенные человеком, о котором, без сомнения, ни один из этих начальников сроду ни разу не задумался. Вообразим графики, отражающие ежегодный рост прибылей «Эйвона» по сегментам рынка: международные показатели – синим, местные – красным. Ежегодный отчет иллюстрирует общий оборот компании, объемы сбыта, прибыли отдельных торговых точек; в нем целые страницы прочих показателей во всех мыслимых видах графиков и диаграмм – и тебе столбчатых, и круговых.
Если бы средневековый торговец показал кому-нибудь результаты своей работы в таком виде, на него бы вытаращили глаза. Что означают эти разноцветные геометрические фигуры, соседствующие в том же документе с римскими цифрами? Макароны и сыр уже успели изобрести (сохранился английский рецепт XIV века[102]), а вот идею поженить числа и геометрические фигуры – нет. Ныне графическое представление знания настолько общепринято, что мы едва ли думаем о нем как о математическом приеме: даже самый матемафобный директор «Эйвона» понимает, что линия на графике прибылей, тянущаяся вверх, есть многая радость. Но куда бы ни тянулись графики – вниз или вверх, – изобретение их стало жизненно важным шагом на пути к теории местоположения.
Союз чисел и геометрии греки понимали, увы, неверно – аккурат в этом месте философия оказалась помехой. В наши дни любой школьник изучает, грубо говоря, числовой ряд – линию, обеспечивающую упорядоченную связь между точками на ней и положительными и отрицательными целыми числами, равно как и между всеми дробями и прочими числами на этой линии. Эти «другие числа» – иррациональные, т. е. не целые и не дроби, как раз их отказался признавать Пифагор, но они тем не менее существуют. Числовой ряд обязан включать в себя и их – без иррациональных чисел в нем возникнет бесконечное множество дыр.
Мы уже говорили, как Пифагор открыл квадрат с длиной стороны в единицу, у которого диагональ равна квадратному корню из двух, а это иррациональное число. Если эту самую диагональ отложить в числовом ряду от нуля, другой ее конец обозначит точку, соответствующую иррациональному числу – квадратному корню из двух. Запретив обсуждение иррациональных чисел – они не вписывались в его представления о том, что все числа обязаны быть либо целыми, либо дробными, – Пифагор был вынужден запретить и ассоциацию прямой с числом. Таким способом он замел эту неувязку под ковер – и придушил тем самым одну из самых плодотворных идей в истории человеческой мысли. У всех свои недостатки.
Одним из немногих преимуществ утери греческих трудов стал упадок влияния пифагоровых представлений об иррациональных числах. Теория иррациональных чисел не получила твердого фундамента аж до самого Георга Кантора и работ его современника Рихарда Дедекинда – в XIX веке. И тем не менее, со Средних веков и до Дедекинда и Кантора большинство математиков и ученых закрывали глаза на кажущееся несуществование иррациональных чисел и вполне счастливо, хоть и неумело, все равно их применяли. Очевидно, радость получения правильного ответа перевешивала неприятности работы с числами, которых не существует.
В наше время применение «нелегальной» математики – общее место науки, особенно физики. Теория квантовой механики, например, разработанная в 1920–1930-х годах, очень полагалась на нечто придуманное английским физиком Полем Дираком – дельта-функцию. Согласно математике того времени, дельта-функция попросту равнялась нулю. По Дираку же, дельта-функция равна нулю всюду, кроме одной точки, где ее значение – бесконечность, и, если применить эту функцию вместе с определенными методами счисления, она дает ответы одновременно и конечные, и (обычно) отличные от нуля. Позднее французский математик Лоран Шварц смог доказать, что правила математики можно переформулировать так, чтобы допустить существование дельта-функции, и из этого доказательства родилась целая новая область математики[103]. Квантовые теории поля в современной физике в этом смысле тоже можно считать «нелегальными» – во всяком случае, никто пока не смог успешно доказать, говоря математически, что такие теории существуют «по правилам».
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
О равнодушии вавилонян к знанию ирландский поэт и драматург Уильям Батлер Йейтс (1865–1939) написал в своем стихотворении «Заря», начинающемся так:
Я был бы невеждой, как та заря,
Что сверху вниз глядела, зря,
Как меряет город жена царя
Иглой от броши своей,
Иль на дряблых людей, что взирали
Из мелочного Вавилона
На беспечность планет и пути их
И таянье звезд от взошедшей луны,
А сами в скрижали суммы писали…
Здесь и далее прим. автора, кроме оговоренных особо.
2
Michael Williams, A History of Computing Technology (Englewood Cliffs, NJ: Prentice-Hall, 1985), стр. 39–40.
3
Интересно о происхождении счета и арифметики у Уильямза, гл. 1.
4
Williams, стр. 3.
5
R. G. W. Anderson, The British Museum (London: British Museum Press, 1997), стр. 16.
6
Pierre Montet, Eternal Egypt, trans. Doreen Weightman (New York: New American Library, 1964), стр. 1–8.
7
Alfred Hooper, Makers of Mathematics (New York: Random House, 1948), стр. 32.
8
Georges Jean, Writing: The Story of Alphabets and Scripts, trans. Jenny Oates (New York: Harry N. Abrams, 1992), стр. 27.
9
Геродот писал, что развитие египетской геометрии стимулировали задачи налогообложения. См.: W. K. C. Guthrie, A History of Greek Phulosophy (Cambridge, UK: University Press, 1971), стр. 34–35, и Herbert Turnbull, The Great Mathematicians (New York: New York University Press, 1961), стр. 1.
10
Rosalie David, Handbook of Life in Ancient Egypt (New York: Facts on File, 1998), стр. 96.
11
Эти и другие поразительные факты можно найти благодаря вкладу Алексея в эти примечания – вот где: James Putnam and Jeremy Pemberton, Amazing Facts about Ancient Egypt (London and New York: Thames & Hudson, 1995), стр. 46.
12
Хороший обзор вавилонской и шумерской математики см.: Edna E. Kramer, The Nature and Growth of Modern Mathematics (Princeton, NJ: Princeton University Press, 1981), стр. 2–12.
13
Для сравнения египетской и вавилонской математик см.: Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford University Press, 1972), стр. 11–22. См. Также: H. L. Resnikoff and R. O. Wells, Jr., Mathematics in Civilization (New York: Dover Publications, 1973), стр. 69–89.
14
Также известен как «папирус Ахмеса»; Александр Генри Ринд (Райнд, 1833–1863) – шотландский юрист и египтолог. – Прим. пер.
15
Resnikoff and Wells, стр. 69.
16
Kline, стр. 11.
17
Цит. по: The First Mathematicians (март, 2000); сходная, но более сложная риторическая задача есть у Клайна, стр. 9.
18
Kline, стр. 259.
19
О жизни и работе Фалеса см.: Sir Thomas Heath, A History of Greek Mathematics (New York: Dover Publications, 1981), стр. 118–149; Jonathan Barnes, The Presocratic Philosophers (London: Routledge & Kegan Paul, 1982), стр. 1–16; George Johnston Allman, Greek Geometry from Thales to Euclid (Dublin, 1889), стр. 7–17; G. S. Kirk and J. E. Raven, The Presocratic Philosophers (Cambridge, UK: University Press, 1957), стр. 74–98; Hooper, стр. 27–38; Guthrie, стр. 39–71.
20
Meander (англ.) – изгиб, извилина, излучина, поворот. – Прим. пер.
21
Reay Tannahill, Sex in History (Scarborough House, 1992), стр. 98–99.
22
Richard Hibler, Life and Learning in Ancient Athens (Lanham, MD: University Press of America, 1988), стр. 21.
23
28 мая 585 года до н. э. по современному летоисчислению; битва между лидийцами и мидянами. – Прим. пер.
24
Hooper, стр. 37.
25
Erwin Schroedinger, Nature and the Greeks (Cambridge: Cambridge University Press, 1996), стр. 81.
26
Hooper, стр. 33.
27
О милетской жизни см.: Adelaide Dunham, The History of Miletus (London: University of London Press, 1915).
28
См.: Guthrie, стр. 55–80, и Peter Gorman, Pythagoras, A Life (London: Routledge & Kegan Paul, 1979), стр. 32.
29
Gorman, стр. 40.
30
Хорэс Грили (1811–1872) – американский журналист и политик, социалист-утопист, прославился фразой в своей редакторской колонке, опубликованной 13 июля 1865 г.: «Ступайте на Запад, молодой человек, ступайте на Запад…» – Прим. пер.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Евклидово окно. История геометрии от параллельных прямых до гиперпространства"
Книги похожие на "Евклидово окно. История геометрии от параллельных прямых до гиперпространства" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства"
Отзывы читателей о книге "Евклидово окно. История геометрии от параллельных прямых до гиперпространства", комментарии и мнения людей о произведении.