» » » » Ирина Спивак - Репликация ДНК: учебное пособие


Авторские права

Ирина Спивак - Репликация ДНК: учебное пособие

Здесь можно купить и скачать "Ирина Спивак - Репликация ДНК: учебное пособие" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Издательство Н-Лcc2d7790-481e-11e1-aac2-5924aae99221, год 2011. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Репликация ДНК: учебное пособие
Издательство:
неизвестно
Жанр:
Год:
2011
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Репликация ДНК: учебное пособие"

Описание и краткое содержание "Репликация ДНК: учебное пособие" читать бесплатно онлайн.



Учебное пособие соответствует государственному образовательному стандарту дисциплин «Экология» и «Физико-химические основы цитологии» подготовки бакалавров по направлению 140400 «Техническая физика».

В пособии описываются проблемы репликации ДНК. Излагаются современные представления о строении хромосом, координации в течение клеточного цикла процессов ДНК-метаболизма, а также описываются участвующие в этих процессах белки и рассматриваются механизмы, отвечающие за сохранение генетической стабильности организмов.

Предназначено для студентов дневной, очно-заочной и заочной форм обучения, изучающих дисциплины «Экология» и «Физико-химические основы цитологии» в рамках подготовки бакалавров по направлению 140400 «Техническая физика».






2.4. Скорость репликации

Скорость репликации генома регулируется в основном частотой инициирующих событий. Так, у Е. соli скорость копирования в каждой репликативной вилке постоянна и равна примерно 1500пн в секунду: следовательно, полный геном длиной 4·106пн реплицируется примерно за 40 мин. Если хромосома реплицируется быстрее, это значит, что увеличивается частота актов инициации в той же самой точке начала репликации при прежней скорости копирования. Клетки Е. соli делятся каждые 20 мин; это означает, что репликация ДНК инициируется в хромосомах, еще не закончивших предыдущий раунд репликации. Скорость движения репликативной вилки в эукариотических клетках значительно меньше (10-100пн в секунду), но завершение репликации хромосомы в разумное время обеспечивается одновременной инициацией во множестве точек. Итак, скорость репликации хромосом контролируется числом и расположением точек начала репликации. Например, в ранних эмбрионах дрозофилы репликация отдельной хромосомы осуществляется каждые 3 мин, благодаря почти одновременной инициации событий в точках, отстоящих друг от друга на 7000-8000пн. В тоже время известно, что у дрозофилы в ходе раннего эмбрионального развития, как скорость репликации, так и размеры и число репликонов тканеспецифичны. В культуре же соматических клеток той же дрозофилы скорость удвоения хромосом значительно более медленная, так как репликация начинается в гораздо меньшем числе точек, находящихся друг от друга на расстоянии 40000пн, при этом продолжительность S-фазы составляет 600 мин. Следовательно, при фиксированной скорости синтеза ДНК множественная инициация повышает скорость процесса репликации в целом и таким образом уменьшает время, необходимое для удвоения всего набора хромосом. Данные о числе репликонов и скорости репликации приведены в табл.1.

Различия в продолжительности S-фазы найдены и у других организмов. Например, у тритона S-фаза длится 1 ч в ядрах бластулы и 200 ч в предмейотической S-фазе сперматоцитов. Вероятно, длительность S-фазы определяется не скоростью синтеза ДНК, а числом задействованных ориджинов репликации. В ДНК клеток нейрулы тритона они находятся на расстоянии около 40 мкм друг от друга, а в соматических клетках – около 100 мкм.


Таблица 1

Число и длина репликонов у разных организмов.



В соответствии с современными представлениями репликоны у эукариот распределены в геноме не случайно, они расположены группами (replicon foci). В этих группах, или фокусах, собираются ферменты репликации, которые удлиняют вилки репликации одновременно 10-100 соседних репликонов длиной примерно по 100тпн каждый. Репликация в них завершается за 45–60 мин. Кроме этого существуют очень длинные репликоны (более 1000тпн) – столь большие, что репликация в них продолжается по нескольку часов.

Активация ориджинов репликации происходит на протяжении всей S-фазы. Например, АRS1 S.cerevisiae активируется в ранней, а АRS501 – в поздней S-фазе. Большинство ориджинов активируется в середине S-фазы. Интересно отметить, что участки хромосом S.cerevisiae, реплицирующиеся в ранней или поздней S-фазе, располагаются мозаично, то есть перемешаны. У S.cerevisiae было обнаружено, что центральная область хромосомы IV реплицируется в ранней, а теломеры – в поздней S-фазе. Участок ДНК размером 67тпн, прилежащий к теломере на правом конце хромосомы V и содержащий АRS501, реплицируется в поздней S-фазе. По-видимому, поздняя репликация этого участка хромосомы является следствием его соседства с теломерой. Кроме того, известно, что в конце S-фазы реплицируются "молчащие" гены, например неэкспрессирующиеся в определенных типах клеток локусы НМL и НМR, которые локализованы в субтеломерных областях. Активно экспрессирующиеся гены, например локус МАТ, напротив, реплицируются в первой половине S-фазы.

Глава 3. Инициация репликации

Ориджины репликации являются местом, с которого начинает свое движение репликативная вилка. Но ДНК-полимеразы не могут начать процесс репликации без помощи других белков. Белки, участвующие в распознавании ориджина и спсобствующие привлечению к нему праймазы – РНК-полимеразы, синтезирующей праймер, «затравку» для синтеза ДНК – и ДНК-полимеразы, образуют комплекс инициации репликации.

3.1 Инициация репликации у E.coli

Инициация репликации в оriС в системе in vitro начинается с формирования комплекса, в состав которого входят шесть белков: DnaА, DnaВ, DnaС, НU, Girase и SSВ. Сначала с девятичленной последовательностью связывается мономер DnaА, затем 20–40 мономеров этого белка формируют большой агрегат. ДНК ориджина опоясывает его, и цепи ДНК разъединяются в области трех тринадцатичленных последовательностей. На следующем этапе димер DnaВ/DпаС присоединяется к комплексу oriС/DnaА, формируя агрегат размером около 480 кДа, соответствующий сфере с радиусом 6 нм. В результате формируется вилка репликации.

3.2. Инициация репликации у эукариот

Инициация репликации ДНК эукариот начинается с образования комплекса ориджина репликации и белка-инициатора репликации. Этот комплекс называется пострепликативным (роst.-RС). Он служит платформой для сборки структур более высокого порядка, которые переводят хроматин в состояние, компетентное для репликации. Последовательные стадии образования комплексов инициации репликации показаны на рис. 7.

Белком-инициатором репликации ДНК в клетках эукариот является ОRС (origin recognition complex), который впервые был описан у S.cerevisiae. Впоследствии ORC-подобные белки были обнаружены и изучены и у других представителей эукариот, а также у млекопитающих и человека. У всех эукариот ОRС образован шестью субъединицами – Огс1-Огсб (120-50 кДа). Для жизнедеятельности S. cerevisiae существенны все шесть субъединиц комплекса. Две разные группы субъединиц ОRС участвуют в распознавании последовательностей ориджина при его связывании с ориджином репликации. Огс1, Огс2 и Огс4 взаимодействуют с АСS, остальные три субъединицы распознают B1– подобные элементы. Возможно, что связь с нуклеотидными последовательностями В1 осуществляет только Огс5. ОRС специфически связывается с ДНК только в присутствии АТР и обладает АТР-азной активностью, которая регулируется координированным взаимодействием белка с АТР и элементами АRS. АТР связывается с субъединицей Огс1 и играет роль кофактора, необходимого для присоединения ОRС к ориджину. Специфическая последовательность ориджина, связавшегося с ОRС, ингибирует АТРазную активность Огс1, в то время как однонитевые участки ДНК, появляющиеся в S-фазе, ее снова активируют. При этом меняется конформация ОRС – с вытянутой (ехtended) на изогнутую (bеnt). Возможно, связывание и гидролиз АТР субъединицей Огс1 участвуют в контролировании функций ОRС в клеточном цикле.

У делящихся дрожжей S.ротbe белок Огс4 содержит в N-концевом домене так называемые «АТ-крючки», с помощью которых ОRС связывается с несколькими областями АRS1, богатыми АТ-последовательностями. У S.cerevisiae ORS присоединяется к ориджину в конце митоза, образуя пострепликативный комплекс (post-RС), и остается связанным с ним в последующих клеточных циклах. При этом post-RС существует в фазах S, G2 и М, а в фазе G1 входит в состав пререпликативного комплекса (рге-RС).

Пререпликативный комплекс формируется на основе post-RC, этот процесс начинается во всех ориджинах одновременно на границе фаз М и G1 и завершается в конце G1 в ориджинах, активирующихся первыми при переходе в S-фазу. В ориджинах, активирующихся позже в S-фазе, образование рге-RC завершается в соответствующий для каждого из них период S-фазы. В G1-фазе во время сборки рге-RС ОRС способен взаимодействовать с циклинзависимыми киназами (Сdks, cyclin-dependent kinases). Это взаимодействие является одним из механизмов, позволяющих клетке формировать рге-RC после митоза. Первыми к post-RC на границе фаз М/G1 присоединяются белок Сdс6 (cell division cycle protein) и семейство шести белков Мст 2–7 (minichromosome maintenance proteins). Белки Мст 2–7 являются наиболее известными среди семейства «поддерживающих мини-хромосомы» белков, впервые идентифицированных у S.сerevisiae при исследовании мутантов, не способных к поддержанию стабильности мини-хромосом.


Рис. 7. Схема инициации репликации у эукариот


Белки Сdс6 и Мст 2–7 описаны у многих представителей эукариот, включая млекопитающих. Недавно было показано, что в клетках S.ротbе и высших эукариот в ранней стадии формирования рге-RС участвует еще один белок – Cdt1 (cell division termination). Белки Мст 2–7 образуют гексамерный комплекс МСМ – ключевой компонент рге-RС. МСМ генерирует контрольный сигнал на нереплицированном хроматине для ингибирования преждевременного митоза в G1-фазе. Также он необходим для продвижения клетки по циклу в S-фазу. Присоединение МСМ к ориджину репликации регулируется фосфорилированием-дефосфорилированием отдельных субъединиц этого комплекса. Например, частичное дефосфорилирование Мст4-субъелиницы, гиперфосфорилированной в фазе М, способствует образованию рге-RС, а полное дефосфорилирование Мст3-субъединицы инактивирует комплекс и препятствует его связыванию с хроматином. В то же время, присоединение МСМ к ориджину зависит от белков Сdс6 и Сdt1, которые совместно «насаживают» МСМ на хроматин. В отсутствие Сdс6 клетки S.cerevisiae теряют способность инициировать репликацию ДНК и подвергаются «урезанному» митозу и нереплицированные хромосомы сегрегируют случайным образом к полюсам веретена.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Репликация ДНК: учебное пособие"

Книги похожие на "Репликация ДНК: учебное пособие" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ирина Спивак

Ирина Спивак - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ирина Спивак - Репликация ДНК: учебное пособие"

Отзывы читателей о книге "Репликация ДНК: учебное пособие", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.