» » » Ричард Фейнман - 2a. Пространство. Время. Движение


Авторские права

Ричард Фейнман - 2a. Пространство. Время. Движение

Здесь можно скачать бесплатно "Ричард Фейнман - 2a. Пространство. Время. Движение" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
2a. Пространство. Время. Движение
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "2a. Пространство. Время. Движение"

Описание и краткое содержание "2a. Пространство. Время. Движение" читать бесплатно онлайн.








Это, конечно, то же самое решение, которое уже было нами по­лучено ранее. Поскольку m(w20-w2) — действительное число, то фазовые углы F и х совпадают (или отличаются на 180°, если (w2>w20). Об этом тоже уже говорилось. Модуль х, который определяет размах колебаний, связан с модулем F множителем 1/m(w20-w2); этот множитель становится очень большим, если w приближается к w0. Таким образом, можно достичь очень сильного отклика, если приложить к осциллографу нужную ча­стоту w (если с нужной частотой толкать подвешенный на ве­ревочке маятник, то он поднимается очень высоко).

§ 2. Вынужденные колебания с торможением

Итак, мы можем решить задачу о колебательном движении, пользуясь изящной математикой. Однако изящество немногого стоит, когда задача и так решается просто; математику на­до использовать тогда, когда решаются более сложные зада­чи. Перейдем поэтому к одной из таких задач, которая, кроме того, ближе к действительности, чем предыдущая. Из уравне­ния (23.5) следует, что, если w в точности равна w0, амплитуда колебания становится бесконечной. Этого, конечно, не может быть, потому что многие вещи, например трение, ограничи­вают амплитуду, а мы их не учитывали. Изменим теперь (23.2) так, чтобы учесть трение.

Сделать это обычно довольно трудно, потому что силы тре­ния очень сложны. Однако во многих случаях можно считать, что сила трения пропорциональна скорости движения объекта. Именно такое трение препятствует медленному движению тела в масле или другой вязкой жидкости. Когда предмет стоит на месте, на него не действуют никакие силы, но чем скорее он движется и чем быстрее масло должно обтекать этот предмет, тем больше сопротивление. Таким образом, мы предположим, что в (23.2), кроме уже написанных членов, су­ществует еще один — сила сопротивления, пропорциональная скорости: Ff=-c(dx/dt). Удобно записать с как произведение m на другую постоянную g, это немного упростит уравнение.

Мы уже проделывали такой фокус, когда заменяли k на mw20, чтобы упростить вычисления. Итак, наше уравнение имеет вид

или, если положить с=mg и k=mw20 и поделить обе части на m,

Это самая удобная форма уравнения. Если g очень мало, то мало и трение, и, наоборот, большие значения g соответствуют громадному трению. Как решать это новое линейное уравнение? Предположим, что внешняя сила равна F0cos(wt+D); можно было бы подставить это выражение в (23.6а) и попытаться ре­шить полученное уравнение, но мы применим наш новый метод. Представим F как действительную часть , a x — как действительную часть и подставим эти комплексные числа в (23.6а). Собственно говоря, и подставлять-то нечего; внимательно посмотрев на (23.6а), вы тут же скажете, что оно превратится в

[Если бы мы попытались решить (23.6а) старым прямолиней­ным способом, то оценили бы по достоинству магический «комп­лексный» метод.] Поделив обе части уравнения на exp(iwt), найдем отклик осциллятора на силу

Итак, отклик x равен силе F, умноженной на некоторый множи­тель. Этот множитель не имеет ни названия, ни какой-то своей собственной буквы, и мы будем обозначать его буквой R:

тогда

Этот множитель можно записать либо как p+iq, либо как рехр(iq). Запишем его в виде рехр(iq) и посмотрим, к чему это приведет. Внешняя сила — это действительная часть числа F0ехр(iD)ехр(iwt), она равна F0cos(wt+D). Уравне­ние (23.9) говорит нам, что отклик равен ; мы условились

писать R в виде R=rехр(iq); следовательно,

Вспомним (об этом уже говорилось), что физическое значение х, равное действительной части комплексного числа х, равно дей­ствительной части rF0exp[i(q+D)]exp(iwt). Но r и F0 действительны, а действительная часть ехр[i(q+D+wt)] — это просто cos(wt+D+q). Таким образом,

x=rF0cos(wt+D+q). (23.10)

Это значит, что амплитуда отклика равна амплитуде силы F, умноженной на коэффициент усиления r; мы нашли «размах» колебаний. Но это еще не все: видно, что х колеблется не в такт с силой; фаза силы равна D, а у x; она сдвинута на дополни­тельную величину q. Следовательно, r и q — это величина и фазовый сдвиг отклика.

Найдем теперь значение r. Квадрат модуля любого комп­лексного числа равен произведению этого числа на комплексно сопряженное, т. е.

Можно найти и фазовый угол q

значит,

Знак минус возник оттого, что tg(-q) =-tgq. Угол q отрицате­лен при всех значениях w, т. е. смещение х отстает по фазе от силы F.

На фиг. 23.2 показано, как изменяется r2 при изменении час­тоты (r2 для физика интереснее, чем r, потому что r2 пропорцио­нально квадрату амплитуды, а значит, и той энергии, которую передает осциллятору внешняя сила).

Фиг.23.2. График зависимости r2 от w.

Очевидно, что если g мало, то основной член в (23.11) — это 1/(w20-w2)2, и отклик стремится к бесконечности, если w приближается к w0. Но эта «бесконеч­ность» — не настоящая бесконечность, потому что даже если w=w0, то все еще остается слагаемое 1/g2w2. Зависимость сдвига фазы от частоты изображена на фиг. 23.3.

Фиг. 23.3. График зависимости q от w.

Иногда приходится иметь дело с формулой, немного отли­чающейся от (23.8); она тоже называется «резонансной» и, не­смотря на некоторое отличие от (23.8), описывает те же самые явления. Дело в том, что если значение g очень мало, то наи­более интересная область резонансной кривой лежит около частоты w=w0, а здесь при малых g формулу (23.8) с большой степенью точности можно заменить приближенной формулой. Поскольку w20-w2=(w0-w)(w0+w), то для w, очень близких к w0, разность квадратов почти равна 2w0(w0-w), a gw можно заменить на gw0. Значит, w20-w2+gw»2w0(w0-w+ig/2) и

Легко найти и r2:

А теперь решите сами такую задачу: с увеличением частоты зна­чение r2 сначала растет, достигает при w0 максимума, а потом снова убывает. На каком расстоянии от w0 расположены часто­ты, которым соответствуют значения r2, вдвое меньшие мак­симального? Покажите, что при очень малом g эти точки от­стоят друг от друга на расстояние Dw=g. Это значит, что ре­зонанс делается более острым по мере того, как влияние тре­ния становится все слабее и слабее.

Другой мерой ширины резонанса может служить «доброт­ность» q=wo/g (чем уже резонанс, тем больше Q); если Q=1000, то по шкале частот ширина резонансной кривой равна всего 0,001. Резонансной кривой на фиг. 23.2 соответствует Q=5.

Явление резонанса важно потому, что оно проявляется доволь­но часто; описанию некоторых видов этих проявлений мы посвя­тим остаток главы.

§ 3. Электрический резонанс

Простейшие и самые широкие технические применения резо­нанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элементами цепи, и бывают они трех типов, хотя в каждый элемент одного типа всегда примешано чуточку эле­ментов других типов. Прежде чем подробно описать эти элементы, заметим, что наше представление о механическом осцилляторе как о массе, подвешенной к концу пружины, всего лишь приближение. В «массе» сосредоточена вовсе не вся масса системы: пружина тоже обладает какой-то массой, пружина тоже инерционна. Точно так же «пружина» не состоит из одной пружины, масса тоже немного упруга, а не абсолютно тверда, как это может показаться. Подпрыгивая вверх и вниз, она слегка изгибается под толчками пружины. Так же обстоит дело и в электричестве. Расположить все предметы по «элемен­там цепи» с чистыми, идеальными характеристиками можно только приближенно. Так как у нас нет времени обсуждать пре­делы таких приближений, мы просто предположим, что они до­пустимы.

Итак, о трех элементах цепи. Первый называется емкостью (фиг. 23.4); в качестве примера емкости могут служить две ме­таллические пластинки, разделенные тонким слоем диэлект­рика.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "2a. Пространство. Время. Движение"

Книги похожие на "2a. Пространство. Время. Движение" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 2a. Пространство. Время. Движение"

Отзывы читателей о книге "2a. Пространство. Время. Движение", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.