» » » Ричард Фейнман - 2a. Пространство. Время. Движение


Авторские права

Ричард Фейнман - 2a. Пространство. Время. Движение

Здесь можно скачать бесплатно "Ричард Фейнман - 2a. Пространство. Время. Движение" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
2a. Пространство. Время. Движение
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "2a. Пространство. Время. Движение"

Описание и краткое содержание "2a. Пространство. Время. Движение" читать бесплатно онлайн.








Фиг. 22.2. Комплексное число как точка на плоскости.

Представим каждое комплексное число в виде x+iy. Если расстояние точки от начала координат обозначить через r, а угол радиуса-вектора точки с осью x через q, то выражение x+iy можно представить в виде rei9. Это следует из геометрических соотношений между х, у, r и q. Таким образом, мы объединили алгебру и геометрию. Начиная эту главу, мы знали только целые числа и умели их считать. Зато у нас была небольшая идея о могуществе шага в сторону и обобщения. Используя алгебраические «законы», или свойства чисел, сведенные в уравнения (22.1), и определения обратных операций (22.2), мы смогли создать не только новые числа, но и такие полезные вещи, как таблицы логарифмов, степеней и тригонометрические функции (они возникли при возведении действительных чисел в мнимые степени), и все это удалось сделать, извлекая много раз квадратный корень из десяти!

* Квадратный корень лучше всего извлекать не тем способом, кото­рому обычно учат в школе, а немного иначе. Чтобы извлечь квадратный корень из числа N, выберем достаточно близкое к ответу число а, вы­числим N/a и среднее а'=1/2[а+(N/а)]; это среднее будет новым числом а, новым приближением корня из N. Этот процесс очень быстро приводит к цели: число значащих цифр удваивается после каждого шага.

Глава 23

РЕЗОНАНС

§ 1. Комплексные числа и гармоническое движение

§ 2. Вынужденные колебания с торможением

§ 3. Электрический резонанс

§ 4. Резонанс в природе

§ 1. Комплексные числа и гармоническое движение

Мы снова будем говорить в этой главе о гармоническом осцилляторе, особенно об ос­цилляторе, на который действует внешняя си­ла. Для анализа этих задач нужно развить новую технику. В предыдущей главе мы ввели понятие комплексного числа, которое состоит из действительной и мнимой частей и которое можно изобразить на графике. Действительная часть числа будет изображаться абсциссой, а мнимая — ординатой. Комплексное число а можно записать в виде a=ar+iai; при такой записи индекс r отмечает действительную часть а, а индекс i — мнимую. Взглянув на фиг. 23.1, легко сообразить, что комплексное число a=x+iy можно записать и так: x+iy=rexp(iq), где r2=x2+y2=(x+iy)(x-iy)=aa * (а* — это комплексно сопряженное к а число; оно полу­чается из а изменением знака i).

Фиг. 23,1. Комплексное число, изображенное точкой на «комплек­сной плоскости».

Итак, комп­лексное число можно представить двумя спо­собами: явно выделить его действительную и мнимую части или задать его модулем r и фазо­вым углом q. Если заданы r и q, то х и у равны rcosq и rsinq, и, наоборот, исходя из числа x+iy, можно найти r=Ц(x2+y2)и угол q; tgq равен у/х (т. е. отношению мнимой и действи­тельной частей).

Чтобы применить комплексные числа к ре­шению физических задач, проделаем такой трюк. Когда мы изучали осциллятор, то имели дело с внешней силой, пропорциональной coswt. Такую силу F=F0coswt можно рас­сматривать как действительную часть комп­лексного числа F = F0exp(iwt), потому что exp(iwt)=coswt+isinwt. Такой переход удобен: ведь иметь дело с экспонентой легче, чем с косинусом. Итак, трюк состоит в том, что все относящиеся к осциллятору функции рассматриваются как действительные части каких-то комплексных функций. Найденное нами ком­плексное число F, разумеется, не настоящая сила, ибо физика не знает комплексных сил: все силы имеют только действитель­ную часть, а мнимой части взяться просто неоткуда. Тем не менее мы будем говорить «сила» F0exp(iwt), хотя надо помнить, что речь идет лишь о действительной ее части.

Рассмотрим еще один пример. Как представить косинусоидальную волну, фаза которой сдвинулась на D? Конечно, как действительную часть F0exp[i((wt-D2)]; экспоненту в этом слу­чае можно записать в виде exp[i(wt-D)]=ехр(iwt)exp(-iD). Алгебра экспонент гораздо легче алгебры синусов и косинусов; вот почему удобно использовать комплексные числа. Часто мы будем писать так:

Шляпка над буквой будет указывать, что мы имеем дело с комп­лексным числом, т. е.

Однако пора начать решать уравнения, используя комплексные числа, тогда мы увидим, как надо применять комплексные чи­сла в реальных обстоятельствах. Для начала попытаемся решить уравнение

где F — действующая на осциллятор сила, а х — его смещение. Хотя это и абсурдно, предположим, что х и F — комплексные числа. Тогда х состоит из действительной части и умноженной на i мнимой части; то же самое касается и F. Уравнение (23.2) в этом случае означает

или

Комплексные числа равны, когда равны их действительные и мнимые части; следовательно, действительная, часть х удовлет­воряет уравнению, в правой части которого стоит действительная часть силы. Оговорим с самого начала, что такое разделение действительных и мнимых частей возможно не всегда, а только в случае линейных уравнений, т. е. уравнений, содержащих х лишь в нулевой и первой степенях. Например, если бы уравне­ние содержало член lх2, то, сделав подстановку xr+ixt, мы полу­чили бы l(xr+ixi)2, и выделение действительной и мнимой час­тей привело бы нас к l2r-x2i) и 2ilxrxi. Итак, мы видим, что действительная часть уравнения содержит в этом случае член -lx2i. Мы получили совсем не то уравнение, какое собирались решать.

Попытаемся применить наш метод к уже решенной задаче о вынужденных колебаниях осциллятора, т. е. об осцилля­торе, на который действует внешняя сила. Как и раньше, мы хотим решить уравнение (23.2), но давайте начнем с уравнения

где — комплексное число. Конечно, х — тоже комп­лексное число, но запомним правило: чтобы найти интересую­щие нас величины, надо взять действительную часть х. Найдем решение (23.3), описывающее вынужденные колебания. О дру­гих решениях поговорим потом. Это решение имеет ту же час­тоту, что и внешняя (приложенная) сила. Колебание, кроме того, характеризуется амплитудой и фазой, поэтому если пред­ставить смещение числом , то модуль его скажет нам о размахе колебаний, а фаза комплексного числа — о временной задержке колебания. Воспользуемся теперь замечательным свойством экс­поненты:

Дифференцируя экспо­ненциальную функцию, мы опускаем вниз экспоненту, делая ее простым множителем. Дифференцируя еще раз, мы снова при­писываем такой же множитель, поэтому очень просто написать уравнение для : каждое дифференцирование по времени надо заменить умножением на iw. (Дифференцирование становится теперь столь же простым, как и умножение! Идея использовать экспоненциальные функции в линейных дифференциальных уравнениях почти столь же грандиозна, как изобретение лога­рифмов, которые заменили умножение сложением. Здесь дифференцирование заменяется умножением.) Таким образом, мы получаем уравнение

[Мы опустили общий множитель eiwt.]Смотрите, как все просто! Дифференциальное уравнение немедленно сводится к чисто алгебраическому; сразу же можно написать его решение

поскольку (iw)2=-w2. Решение можно несколько упростить, подставив k/m=w20, тогда

Это, конечно, то же самое решение, которое уже было нами по­лучено ранее. Поскольку m(w20-w2) — действительное число, то фазовые углы F и х совпадают (или отличаются на 180°, если (w2>w20). Об этом тоже уже говорилось. Модуль х, который определяет размах колебаний, связан с модулем F множителем 1/m(w20-w2); этот множитель становится очень большим, если w приближается к w0. Таким образом, можно достичь очень сильного отклика, если приложить к осциллографу нужную ча­стоту w (если с нужной частотой толкать подвешенный на ве­ревочке маятник, то он поднимается очень высоко).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "2a. Пространство. Время. Движение"

Книги похожие на "2a. Пространство. Время. Движение" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 2a. Пространство. Время. Движение"

Отзывы читателей о книге "2a. Пространство. Время. Движение", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.