» » » Ричард Фейнман - 5b. Электричество и магнетизм


Авторские права

Ричард Фейнман - 5b. Электричество и магнетизм

Здесь можно скачать бесплатно "Ричард Фейнман - 5b. Электричество и магнетизм" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
5b. Электричество и магнетизм
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "5b. Электричество и магнетизм"

Описание и краткое содержание "5b. Электричество и магнетизм" читать бесплатно онлайн.








Отсюда возникает еще один интересный вопрос. А не спра­ведливо ли это утверждение и для уравнений электростатики? Может быть, и они годятся только как сглаженная имитация на самом деле гораздо более сложного микромира? И реальный мир состоит из маленьких Х-онов, которые можно различить только на чрезвычайно малых расстояниях? А проводя наши измерения, мы всегда наблюдаем все в таком грубом масштабе, что не можем увидеть эти маленькие Х-оны, вот почему мы и приходим к дифференциальным уравнениям?

Наша современная наиболее полная теория электродинамики действительно обнаруживает трудности на очень малых рас­стояниях. Поэтому в принципе возможно, что эти уравнения представляют собой сглаженные версии чего-то: Они оказы­ваются правильными на расстояниях вплоть до 10-14 см, но за­тем они начинают выглядеть неправильными. Возможно, что существует пока еще не открытый «механизм» и что детали внут­реннего сложного устройства скрыты в уравнениях, имеющих гладкий вид, как это получается в «гладкой» диффузии нейтро­нов. Но никто еще не сумел сформулировать успешной теории, которая бы работала таким образом.

Как это ни странно, оказывается (по причинам, в которых мы еще не разобрались), что комбинация релятивизма и кван­товой механики, насколько мы их знаем, по-видимому, запре­щает придумывание уравнений, фундаментально отличных от уравнения (12.4) и в то же время свободных от противоречий. Заметьте: не из-за расхождений с экспериментом, а от внутренних противоречий. Таких, как, скажем, предсказание, что сум­ма вероятностей всех возможных исходов станет не равной единице или что энергии оказываются комплексными числами, или еще какой-нибудь чепухи. Никто еще не создал теории электричества, в которой С2j=-r/e0 понималось бы как сгла­женное приближение к более глубокому механизму и которая не приводила бы, в конечном счете к какому-либо абсурду. Но надо сказать, что правильно также и то, что предположение о справедливости С2j=-r/e0 для любых как угодно малых расстояний тоже приводит к дикому абсурду (электрическая энергия электрона бесконечна) — абсурду, от которого никто еще не сумел избавиться.

* Поскольку мы говорим о некогерентных источниках, интенсивности, которых всегда складываются линейно, то электрические заряды в аналогичной задаче всегда будут иметь одинаковые знаки. Следует учесть, что наша аналогия применяется только к световой энергии, падающей на поверхность непрозрачной плоскости, поэтому мы должны включить в интеграл лишь источники, излучающие над поверхностью (конечно, не те, которые расположены под поверхностью!).

Глава 13

МАГНИТОСТАТИКА

§1.Магнитное поле

§2.Электрический ток; сохранение заряда

§З. Магнитная сила, действующая на ток

§4.Магнитное поле постоянных токов; закон Ампера

§5.Магнитное поле прямого провода и соленоида; атомные токи

§6.Относительность магнитных и электрических полей

§7.Преобразование токов и зарядов

§8.Суперпозиция; правило правой руки

Повторить: гл. 15 (вып. 2) «Специальная теория относи­тельности»

§ 1. Магнитное поле

Сила, действующая на электрический заряд, зависит не только от того, где он находится, но и от того, с какой скоростью он движется. Каждая точка в пространстве характеризуется двумя векторными величинами, которые опре­деляют силу, действующую на любой заряд. Во-первых, имеется электрическая сила, даю­щая ту часть силы, которая не зависит от дви­жения заряда. Мы описываем ее с помощью электрического поля Е. Во-вторых, есть еще добавочная компонента силы, называемая маг­нитной силой, которая зависит от скорости заряда. Эта магнитная сила имеет удивительное свойство: в любой данной точке пространства, как направление, так и величина силы зависят от направления движения частицы; в каждый момент сила всегда перпендикулярна вектору скорости; кроме того, в любом месте сила всегда перпендикулярна определенному направ­лению в пространстве (фиг. 13.1), и, наконец, величина силы пропорциональна компоненте скорости, перпендикулярной этому выделен­ному направлению. Все эти свойства можно описать, если ввести вектор магнитного поля В, который определяет выделенное направле­ние в пространстве и одновременно служит константой пропорциональности между силой и скоростью, и записать магнитную силу в виде qvXB. Полная электромагнитная сила, дей­ствующая на заряд, может тогда быть записана так:

F=q(E+vXB), (13.1)

Она называется силой Лоренца.

Фиг. 13.1. Зависящая от скоро­сти компонента силы на движу­щийся заряд направлена перпен­дикулярно V и вектору В. Она пропорциональна также компонен­те V, перпендикулярной В, т. е. vsinq.

Магнитную силу можно легко продемонстрировать, если поднести магнит вплотную к катодной трубке. Отклонение электронного луча указывает на то, что магнит возбуждает силы, действующие на электроны перпендикулярно направле­нию их движения (мы уже об этом говорили в вып. 1, гл. 12).

Единицей магнитного поля В, очевидно, является 1 ньютон-секунда, деленная на кулон-метр. Та же единица может быть написана как вольт-секунда на квадратный метр. Ее назы­вают еще вебер на квадратный метр.

§ 2. Электрический ток; сохранение заряда

Подумаем теперь о том, почему магнитные силы дей­ствуют на провода, по которым течет электрический ток. Для этого определим, что понимается под плотностью тока. Элект­рический ток состоит из движущихся электронов или дру­гих зарядов, которые образуют результирующее течение, или поток. Мы можем представить поток зарядов вектором, опре­деляющим количество зарядов, которое проходит в единицу времени через единичную площадку, перпендикулярную по­току (точь-в-точь как мы это делали, определяя поток тепла). Назовем эту величину плотностью тока и обозначим ее век­тором j. Он направлен вдоль движения зарядов. Если взять маленькую площадку Da в данном месте материала, то коли­чество зарядов, текущее через площадку в единицу времени, равно

nDa, (13.2)

где n — единичный вектор нормали к Dа.

Плотность тока связана со средней скоростью течения зарядов. Предположим, что имеется распределение зарядов, в среднем дрейфующих со скоростью v. Когда это распределе­ние проходит через элемент поверхности Dа, то заряд Dq, проходящий через за время Dt, равен заряду, содержащемуся в параллелепипеде с основанием Dа и высотой vDt (фиг. 13.2).

Фиг. 13.2. Если распределение зарядов с плотностью r дви­жется со скоростью v, то коли­чество заряда, проходящее в единицу времени через площад­ку Dа, есть rv·nDа.

Объем параллелепипеда есть произведение проекции Dа, пер­пендикулярной к v, на vDt, а умножая его на плотность заря­дов r, получаем Dq. Таким образом,

Dq = rv·nDaDt.

Заряд, проходящий в единицу времени, тогда равен рv·nDа, откуда получаем

j = pv. (13.3)

Если распределение зарядов состоит из отдельных зарядов, скажем электронов с зарядом q, движущихся со средней ско­ростью v, то плотность тока равна

j = Nqv,(13.4)

где N — число зарядов в единице объема.

Полное количество заряда, проходящее в единицу времени через какую-то поверхность S, называется электрическим то­ком I. Он равен интегралу от нормальной составляющей потока по всем элементам поверхности (фиг. 13.3):

Фиг. 13.3. Ток I через поверх­ность S равен ∫j·nda

Фиг. 13.4. Интеграл от j·n no замкнутой по­верхности равен скоро­сти изменения полного заряда Q внутри.

Ток I из замкнутой поверхности S представляет собой ско­рость, с которой заряды покидают объем V, окруженный по­верхностью 5. Один из основных законов физики говорит, что электрический заряд неуничтожаем; он никогда не теряется и не создается. Электрические заряды могут перемещаться с места на место, но никогда не возникают из ничего. Мы го­ворим, что заряд сохраняется. Если из замкнутой поверхности возникает результирующий ток, то количество заряда внутри должно соответственно уменьшаться (фиг. 13.4). Поэтому мы можем записать закон сохранения заряда в таком виде:

(13.6)

Заряд внутри можно записать как объемный интеграл от плот­ности заряда


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "5b. Электричество и магнетизм"

Книги похожие на "5b. Электричество и магнетизм" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 5b. Электричество и магнетизм"

Отзывы читателей о книге "5b. Электричество и магнетизм", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.